Để chứng minh N, H, P thẳng hàng ta sẽ chứng minh NHA + AHP = 180 do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.
Thật vậy ta có: AHP = ACP (do tứ giác AHCP nội tiếp).
ACP = ACM (do tính chất đối xứng). (1)
Ta thấy vai trò tứ giác AHCP giống với AHBN nên ta cũng dễ chứng minh được AHBN là tứ giác nội tiếp suy ra AHN = ABN .
Mặt khác, ABN = ABM (do tính chất đối xứng). (2)
Từ (1) và (2) ta suy ra chỉ cần chứng minh ABM + ACM = 180. Điều này là hiển nhiên do tứ giác ABMC nội tiếp.
Vậy NHA + AHP = 180 hay N, H, P thẳng hàng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
b) Khi SO = 2R, hãy tính độ dài đoạn thẳng SD theo R và tính số đo góc SCD.
Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O;R) sao cho điểm C nằm trên cung nhỏ AB (C,D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.
a) Chứng minh năm điểmC, D, H, O, S thuộc đường tròn đường kính SO.
b) Đường thẳng AC cắt đường tròn (O') tại E; đường thẳng AD cắt đường tròn (O) tại F (E, F khác A). Chứng minh bốn điểm C, D, E, F cùng nằm trên một đường tròn.
c) Xác định vị trí điểm C trên nửa đường tròn (O) để AD là tiếp tuyến của nửa đường tròn.
Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB (Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F.
a) Chứng minh: EOF = 90.
Cho hình thang cân ABCD ( AB > CD, AB // CD ) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
a) Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
Cho tam giác ABC có ba góc nhọn ( AB < AC), các đường AF, BD, CE cắt nhau tại H.
a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn.
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm), AC cắt OM tại E; MB cắt nửa đường tròn ( O ) tại D (D khác B). Chứng minh AMCO và AMDE là các tứ giác nội tiếp đường tròn.
c) Chứng minh ba đường thẳng AB, CF và DE đồng quy tại một điểm I.
Cho điểm M thuộc cung nhỏ BC của đường tròn (O). Một đường thẳng d ở ngoài (O) và vuông góc với đường thẳng OM; đường thẳng CM,BM cắt d lần lượt tại D, E. Chứng minh rằng B , C , D , E cùng thuộc một đường tròn.