Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 139

Tìm x, y, z biết : \[\frac{x}{3} = \frac{y}{4},\frac{y}{3} = \frac{z}{5}\] và \[2x - 3y + z = 6\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Giải

Tìm cách giải. Từ hai tỉ lệ thức của giả thiết ,ta cần nối lại tạo thành dãy tỉ số bằng nhau. Quan sát hai tỉ lệ thức ta thấy chúng có chung y vì vậy khi nối cần tạo thành phần chứa y giống nhau. Sau đó vẫn ý tưởng như ví dụ trên, chúng ta có 3 cách giải.

  • Cách 1. Đặt hệ số tỉ lệ k làm ẩn phụ. Biểu thị x, y, z theo hệ số tỉ lệ k.
  • Cách 2. Sử dụng tính chất dãy tỉ số bằng nhau.
  • Cách 3. Biểu diễn x, y theo z từ dãy tỉ số bằng nhau.

ü  Trình bày lời giải

+ Cách 1. Từ giả thiết : \[\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{9} = \frac{y}{{12}}\left( 1 \right)\]

\[\frac{y}{3} = \frac{z}{5} \Rightarrow \frac{y}{{12}} = \frac{z}{{20}}\left( 2 \right)\]

Từ (1) và (2) , suy ra : \[\frac{x}{9} = \frac{y}{{12}} = \frac{z}{{20}}\left( * \right)\]

Ta đặt \[\frac{x}{9} = \frac{y}{{12}} = \frac{z}{{20}} = k\] suy ra \[x = 9k;y = 12k;z = 20k\]

Theo giả thiết : \[2x - 3y + z = 6 \Rightarrow 18k - 26k + 20k = 6 \Rightarrow 2k = 6 \Rightarrow k = 3\]

Do đó: \[x = 27,y = 36,z = 60\].

+ Cách 2. Chúng ta biến đổi giả thiết như cách 1 đến (*)

Theo tính chất dãy tỉ số bằng nhau, ta có :

\[\frac{x}{9} = \frac{y}{{12}} = \frac{z}{{20}} = \frac{{2x}}{{18}} = \frac{{3y}}{{36}} = \frac{z}{{20}} = \frac{{2x - 3y + z}}{{18 - 36 + 20}} = \frac{6}{2} = 3\]

Do đó: \[\frac{x}{9} = 3 \Rightarrow x = 27\]

            \[\frac{y}{{12}} = 3 \Rightarrow y = 36\]

            \[\frac{z}{{20}} = 3 \Rightarrow z = 60\]

Kết luận : \[x = 27,y = 36,z = 60\].

+ Cách 3. (phương pháp thế : ta tính x, y theo z)

Từ giả thiết : \[\frac{y}{3} = \frac{z}{5} \Rightarrow y = \frac{{3z}}{5};\frac{x}{3} = \frac{y}{4} \Rightarrow x = \frac{{3y}}{4} = \frac{{3.\frac{{3z}}{5}}}{4} = \frac{{9z}}{{20}}\]

Mà \[2x - 3y + z = 6 \Rightarrow 2.\frac{{9z}}{{20}} - 3.\frac{{3z}}{5} + z = 6 \Rightarrow \frac{z}{{10}} = 60 \Rightarrow z = 60\]

Suy ra : \[y = \frac{{3.60}}{5} = 36,x = \frac{{9.60}}{{20}} = 27\]

Kết luận : \[x = 27,y = 36,z = 60\]

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một khu đất hình chữ nhật có chiều rộng và chiều dài tỉ lệ với 5 và 8. Diện tích bằng \[1960{m^2}\]. Tính chu vi hình chữ nhật đó.

Xem đáp án » 01/10/2022 529

Câu 2:

\[\frac{{x + y}}{3} = \frac{{5 - z}}{1} = \frac{{y + z}}{2} = \frac{{9 + y}}{5};\]

Xem đáp án » 01/10/2022 424

Câu 3:

Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :

\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]

Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]

Xem đáp án » 01/10/2022 273

Câu 4:

Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]

Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]

Xem đáp án » 01/10/2022 270

Câu 5:

Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]

Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Xem đáp án » 01/10/2022 244

Câu 6:

Tìm x, y, z biết rằng:

\[7x = 10y = 12z\]và \[x + y + z = 685;\]

Xem đáp án » 01/10/2022 240

Câu 7:

Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]

Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]

Xem đáp án » 01/10/2022 235

Câu 8:

Tìm các số x, y, z biết rằng:

\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]

Xem đáp án » 01/10/2022 230

Câu 9:

Cho \[\frac{a}{b} = \frac{b}{c} = \frac{c}{a}\] và \[a + b + c \ne 0\]. Tính \[P = \frac{{{a^{49}}.{b^{51}}}}{{{c^{100}}}}\]

Xem đáp án » 01/10/2022 224

Câu 10:

\[\frac{{xy + 1}}{9} = \frac{{xz + 2}}{{15}} = \frac{{yz + 3}}{{27}}\] và \[xy + yz + zx = 11\]

Xem đáp án » 01/10/2022 222

Câu 11:

Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].

 Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]

Xem đáp án » 01/10/2022 222

Câu 12:

Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:

\[\frac{{{a^3} + 8{b^3} + 27{c^3}}}{{{b^3} + 8{c^3} + 27{d^3}}} = \frac{a}{d}\].

Xem đáp án » 01/10/2022 220

Câu 13:

Cho a, b, c thỏa mãn \[\frac{{a + b + c}}{{a + b - c}} = \frac{{a - b + c}}{{a - b - c}}\] và \[b \ne 0\].Chứng minh rằng : \[c = 0\]

Xem đáp án » 01/10/2022 211

Câu 14:

Cho x, y, z khác 0, thỏa mãn \[\frac{{x - y}}{{x + y}} = \frac{{z - x}}{{z + x}}\]. Chứng minh rằng \[{x^2} = yz\]

Xem đáp án » 01/10/2022 203

Câu 15:

Cho a, b, c là ba số dương, thỏa mãn điều kiện : \[\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b}\]

Hãy tính giá trị của biểu thức \[B = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right)\].

Xem đáp án » 01/10/2022 202

Câu hỏi mới nhất

Xem thêm »
Xem thêm »