Giải
Đặt \[\frac{x}{2} = \frac{y}{3} = k\] suy ra : \[x = 2k,y = 3k\]
Theo giả thiết : \[xy = 24 \Rightarrow 2k.3k = 24 \Rightarrow {k^2} = 4 \Rightarrow k = \pm 2\]
+ Với \[k = 2\]thì \[x = 4;y = 6\]
+ Với \[k = - 2\] thì \[x = - 4;y = - 6\]
Kết luận. Vậy \[\left( {x;y} \right)\] là \[\left( { - 4; - 6} \right),\left( {4;6} \right)\].
Nhận xét. Trong ví dụ này có thể chúng ta mắc sai lầm sau :
+ Thứ nhất trong lời giải trên thiếu trường hợp \[k = - 2\]
+ Thứ hai chúng ta vận dụng tính chất : \[\frac{x}{2} = \frac{y}{3} = \frac{{xy}}{{2.3}} = \frac{{24}}{6} = 4!\] Chúng ta lưu ý rằng tính chất dãy tỉ số bằng nhau không cho phép nhân (hoặc chia) tử thức với nhau. Do vậy gặp điều kiện về phép nhân hoặc lũy thừa giữa các biến, chúng ta nên đặt hệ số tỉ lệ k làm ẩn phụ
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :
\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]
Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]
Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]
Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]
Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]
Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]
Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]
Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]
Tìm các số x, y, z biết rằng:
\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]
Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].
Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]
Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:
\[\frac{{{a^3} + 8{b^3} + 27{c^3}}}{{{b^3} + 8{c^3} + 27{d^3}}} = \frac{a}{d}\].
Cho a, b, c là ba số dương, thỏa mãn điều kiện : \[\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b}\]
Hãy tính giá trị của biểu thức \[B = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right)\].