Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

23/07/2024 140

1) Giải hệ phương trình \[\left\{ \begin{array}{l}{x^2} - xy = 24\\2x - 3y = 1\end{array} \right.\]

2) Giải phương trình \[\frac{{x + 5}}{2} + \frac{{3 - 2x}}{4} = x - \frac{{7 + x}}{6}\]

3) Cho phương trình \[2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1};{x_2}\] thỏa mãn hệ thức \[3{x_1} - 4{x_2} = 11\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

1) Hệ phương trình tương đương với : \[\left\{ \begin{array}{l}{x^2} - \frac{{x\left( {2x - 1} \right)}}{3} = 24\\\frac{{2x - 1}}{3} = y\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + x = 72\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 9x = 8x + 72\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x\left( {x + 9} \right) = 8\left( {x + 9} \right)\\\frac{{2x - 1}}{3} = y\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\left( {x + 9} \right)\left( {x - 8} \right) = 0\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x =  - 9\\x = 8\end{array} \right.\\\frac{{2x - 1}}{3} = y\end{array} \right.\left\{ \begin{array}{l}\left[ \begin{array}{l}x =  - 9\\x = 8\end{array} \right.\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 9\\y =  - \frac{{19}}{3}\end{array} \right. \vee \left\{ \begin{array}{l}x = 8\\y = 5\end{array} \right.\]

Vậy hệ phương trình có nghiệm : \[\left( {x;y} \right) = \left( { - 9; - \frac{{19}}{3}} \right),\left( {8;5} \right)\]

2) Phương trình tương đương với : \[\frac{{\left( {x + 5} \right).6}}{{2.6}} + \frac{{\left( {3 - 2x} \right).3}}{{4.3}} = \frac{{12x}}{{12}} - \frac{{\left( {7 + x} \right).2}}{{6.2}}\]

\[ \Leftrightarrow \left( {x + 5} \right).6 + \left( {3 - 2x} \right).3 = 12x - \left( {7 + x} \right).2 \Leftrightarrow 39 = 10x - 14 \Leftrightarrow x = \frac{{53}}{{10}}\]

 3) Để phương trình có 2 nghiệm phân biệt \[{x_1},{x_2}\] thì \[\Delta  > 0\]

\[ \Leftrightarrow {\left( {2m - 1} \right)^2} - 4.2\left( {m - 1} \right) > 0 \Leftrightarrow {\left( {3 - 2m} \right)^2} > 0 \Leftrightarrow 3 - 2m \ne 0 \Leftrightarrow m \ne \frac{3}{2}\]

Theo định lý Vi-ét, ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{{2m - 1}}{2} = \frac{{1 - 2m}}{2}\\{x_1}.{x_2} = \frac{{m - 1}}{2}\end{array} \right.\]

Kết hợp với yêu cầu đề bài, ta có hệ phương trình \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{1 - 2m}}{2}\\{x_1}{x_2} = \frac{{m - 1}}{2}\\3{x_1} - 4{x_2} = 11\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\4{x_1} + 4{x_2} = 2\left( {1 - 2m} \right)\\4{x_1}.{x_2} = 2\left( {m - 1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\4{x_1} + \left( {3{x_1} - 11} \right) = 2\left( {1 - 2m} \right)\\{x_1}\left( {3{x_1} - 11} \right) = 2\left( {m - 1} \right)\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\2m = \frac{{13 - 7{x_1}}}{2}\\3{x_1}^2 - 11{x_1} = 2m - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\2m = \frac{{13 - 7{x_1}}}{2}\\3{x_1}^2 - 11{x_1} = \frac{{13 - 7{x_1}}}{2} - 2\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{x_1} = 3\\{x_2} =  - \frac{1}{2}\\m =  - 2\end{array} \right.\] hoặc \[\left\{ \begin{array}{l}{x_1} =  - \frac{1}{2}\\{x_2} =  - \frac{{25}}{8}\\m = \frac{{33}}{8}\end{array} \right.\]

Cả hai giá trị m tìm được đều thỏa mãn điều kiện để phương trình có 2 nghiệm

Vậy \[m =  - 2\] hoặc \[m = \frac{{33}}{8}\]

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác \[\Delta ABC\] vuông ở A. Trên cạnh AC lấy 1 điểm M, dựng đường tròn tâm (O) có đường kính MC. Đường thẳng BM cắt đường tròn tâm (O) tại D, đường thẳng AD cắt đường tròn tâm (O) tại S

1) Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA là tia phân giác của góc \[\widehat {BCS}\]

2) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh các đường thẳng BA, EM, CD đồng quy

3) Chứng minh M là tâm đường tròn nội tiếp tam giác \[\Delta ADE\]

Xem đáp án » 03/10/2022 329

Câu 2:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình

Hai đội bóng bàn của hai trường phổ thông thi đấu nhau. Mỗi cầu thủ của đội này phải thi đấu với mỗi cầu thủ của đội kia một trận. Biết rằng tổng số trận đấu bằng 4 lần tổng số cầu thủ hai đội và số cầu thủ của ít nhất một trong hai đội là số lẻ. Hỏi mỗi đội có bao nhiêu cầu thủ?

2) Cho Parabol \[\left( P \right):y = {x^2}\] và đường thẳng \[\left( d \right):2x - {m^2} + 9\]

a) Tìm tọa độ các giao điểm của Parabol (P) và đường thẳng (d) khi \[m = 1\]

b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung

Xem đáp án » 03/10/2022 215

Câu 3:

Cho biểu thức \[P = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{1}{{x - \sqrt x }}} \right):\left( {\frac{1}{{\sqrt x  + 1}} + \frac{2}{{x - 1}}} \right)\]

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tìm m thỏa mãn \[P\sqrt x  = m - \sqrt x ?\]

Xem đáp án » 03/10/2022 200

Câu 4:

Cho x, y là hai số thực thỏa mãn : \[x > y\] và \[xy = 1\]. Chứng minh rằng \[\frac{{{{\left( {{x^2} + {y^2}} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} \ge 8\]

Xem đáp án » 03/10/2022 117

Câu hỏi mới nhất

Xem thêm »
Xem thêm »