adfa
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
Phân thức đối của phân thức 3x-2yx-y có kết quả là:
ii) Chứng minh rằng: 6x2-6x+1x+6:x2+36x2-36x=1
So sánh hai phân thức
x-yx+y và x2-y2x2+y2 với (x > y > 0)
Nghịch đảo của phân thức (x - 2y)/(x - y) là phân thức:
Cho phân thức A=x2-6x+9x2-9
b) Rút gọn A
Tổng của hai phân thức 2xx-y+2yx-y có kết quả là:
c) Có giá trị nào của x để giá trị của phân thức A bằng 0 hay không?
Hiệu hai phân thức 3xx-3--93-x có kết quả là:
Rút gọn biểu thức x+1x2-1 kết quả là:
a) Tìm điều kiện của x để phân thức A xác định.
a) Tìm đa thức A trong đẳng thức: x2+2xy+y2x-y=Ax2-y2
Phép chia x+yx-y:1x2-y2 có kết quả là:
i) Thực hiện các phép tính:
b) x32yx-2y:x22x2y-8y3
b) Tìm giá trị của x để giá trị của phân thức
5x2-125x2+1 bằng 0
a) x2x+y-y2x+y
Một chiếc khăn trải bàn có dạng hình chữ nhật ABCD được thêu một hoạ tiết có dạng hình thoi MNPQ ở giữa với MP = x (cm), NQ = y (cm) (x > y > 0) như Hình 5.
Viết đa thức biểu thị diện tích phần còn lại của chiếc khăn trải bàn đó.
Phân tích mỗi đa thức sau thành nhân tử:
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\);
b) x2 – x – y2 + y;
c) x3 + 2x2 + x – 16xy2.
Tính giá trị của mỗi biểu thức sau:
a) A = 16x2 ‒ 8xy + y2 ‒ 21 biết 4x = y + 1;
b) B = 25x2 + 60xy + 36y2 + 22 biết 6y = 2 ‒ 5x;
c) C = 27x3 – 27x2y + 9xy2 – y3 – 121 biết 3x = 7 + y.
Thực hiện phép tính:
a) \(7{x^2}{y^5} - \frac{7}{3}{y^2}\left( {3{x^2}{y^3} + 1} \right)\);
b) \(\frac{1}{2}x\left( {{x^2} + {y^2}} \right) - \frac{3}{2}{y^2}\left( {x + 1} \right) - \frac{1}{{\sqrt 4 }}{x^3}\);
c) (x + y)(x2 + y2 + 3xy) ‒ x3 ‒ y3;
d) (‒132xn + 1y10zn + 2 + 143xn + 2y12zn) : (11xny9zn) với n là số tự nhiên.
Cho hai đa thức: M = 23x23y ‒ 22xy23 + 21y ‒ 1 và N = ‒22xy3 ‒ 42y ‒ 1.
a) Tính giá trị của mỗi đa thức M, N tại x = 0; y = –2.
b) Tính M + N; M – N.
c) Tìm đa thức P sao cho M – N – P = 63y + 1.
a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right)\left( {\frac{2}{5}{x^3}{y^4}} \right)\);
b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\).