IMG-LOGO

Câu hỏi:

15/07/2024 108

Tìm x biết \[\frac{{2323}}{{3232}} = \frac{x}{{32}}\]

A. 101

B. 32

C. −23

D. 23

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Trả lời:

Ta có:

\[\frac{{2323}}{{3232}} = \frac{{2323:101}}{{3232:101}} = \frac{{23}}{{32}} = \frac{x}{{32}} \Rightarrow x = 23\]

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nhân cả tử số và mẫu số của phân số \[\frac{{14}}{{23}}\]  với số nào để được phân số \[\frac{{168}}{{276}}\]?

Xem đáp án » 26/10/2022 128

Câu 2:

Chọn câu sai. Với \[a;b;m \in Z;b,m \ne 0\]

Xem đáp án » 26/10/2022 118

Câu 3:

Phân số \[\frac{{ - m}}{{ - n}};n,m \in Z;n \ne 0\] bằng phân số nào sau đây

Xem đáp án » 26/10/2022 117

Câu 4:

Tìm số a; b biết \[\frac{{24}}{{56}} = \frac{a}{7} = \frac{{ - 111}}{b}\]

Xem đáp án » 26/10/2022 112

Câu 5:

Rút gọn phân số sau thành phân số tối giản: \[\frac{5}{{20}} = ?\]

Xem đáp án » 26/10/2022 110

Câu 6:

Hãy cho phân số không bằng phân số \[\frac{{ - 8}}{9}\] trong các phân số dưới đây?

Xem đáp án » 26/10/2022 106

Câu 7:

Viết dạng tổng quát của các phân số bằng với phân số \[\frac{{ - 12}}{{40}}\]

Xem đáp án » 26/10/2022 104

LÝ THUYẾT

1. Mở rộng khái niệm về phân số

– Định nghĩa về phân số: Với a, b ∈ ℤ, b ≠ 0 , ta gọi Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số, trong đó a là tử số (tử), b là mẫu số (mẫu) của phân số.

Ví dụ 1: 

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số với tử số là 5 và mẫu số là 4 đọc là năm phần tư.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số với tử số là –10 và mẫu số là 4 đọc là âm mười phần tư.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số với tử số là 3 và mẫu số là –7 đọc là ba phần âm bảy.

Chú ý: Mọi số nguyên đều có thể viết dưới dạng phân số.

Ví dụ 2: 

Số 3 có thể viết dưới dạng phân số là Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

Số –8 có thể viết dưới dạng phân số là Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

2. Hai phân số bằng nhau

Hai phân số Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức và Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức được gọi là bằng nhau nếu a.d = b.c. Khi đó ta viết là Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

Ví dụ 3: Hai phân số Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  bằng nhau vì 5.12 = 60 và 6.10 = 60.

3. Tính chất cơ bản của phân số

– Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức với a, b, m ∈ ℤ; b≠0; m≠0.

– Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức với n là ước chung của a và b; a, b, m ∈ ℤ; b≠0 .

Ví dụ 4: 

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 

Câu hỏi mới nhất

Xem thêm »
Xem thêm »