Cho tam giác ABC nhọn có đường cao AI. Trên AI lấy E sao cho \(\widehat {BAI} = \widehat {BCE}.\) Gọi F là giao điểm của AB và CE, H là giao điểm của BE và AC. Khẳng định nào sau đây là sai?
Hướng dẫn giải
Đáp án đúng là: D
Vì DABI vuông tại I nên \(\widehat {BAI} + \widehat {ABI} = 90^\circ \)(trong tam giác vuông tổng hai góc nhọn bằng 90°)
Xét DBCF có \(\widehat {BCF} + \widehat {BFC} + \widehat {FBC} = 180^\circ \) (tổng ba góc trong một tam giác)
Mà \(\widehat {BAI} = \widehat {BCF}\) nên \(\widehat {BAI} + \widehat {BFC} + \widehat {ABI} = 180^\circ \)
Suy ra \[\widehat {BFC} = 180^\circ - \left( {\widehat {BAI} + \widehat {ABI}} \right) = 180^\circ - 90^\circ = 90^\circ \].
Do đó phương án A là đúng.
Vì \(\widehat {BFC} = 90^\circ \) nên CF ⊥ AB.
Xét DABC có AI, CF là hai đường cao cắt nhau tại E nên E là trực tâm tam giác ABC.
Do đó BH ⊥ AC. Do đó B và C là đúng.
Vậy ta chọn phương án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác MNP có \(\widehat M = 63^\circ ,\widehat N = 48^\circ \). Vẽ trực tâm O của tam giác MNP. Số đo góc MON là:
Cho tam giác ABC vuông tại A, trên tia BA lấy M sao cho BM = BC. Tia phân giác góc B cắt AC tại H. Khẳng định nào sau đây là sai?
Cho tam giác IHK đều có G là trọng tâm. Khẳng định nào sau đây là đúng?
Cho tam giác ABC có \(\widehat B = 50^\circ ,\widehat C = 30^\circ \). Vẽ đường cao AH, phân giác AE. Trên cạnh AC lấy D sao cho \(\widehat {CB{\rm{D}}} = 10^\circ \). Gọi I là giao điểm của AE và BD. Số đo góc AID là:
Cho tam giác XYZ nhọn, đường cao XA. Lấy B thuộc đoạn AZ, vẽ BC vuông góc XZ. Giao điểm của XA và BC là I. Khẳng định nào sau đây là đúng?