Cho đoạn thẳng AB có độ dài 2a .Vẽ về một phía của AB các tia Ax và By vuông góc với AB. Qua trung điểm của M của AB có hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D. Xác định vị trí của các điểm C,D sao cho tam giác MCD có diện tích nhỏ nhất . Tính diện tích tam giác đó.
Gọi K là giao điểm của CM và DB
MA = MB ; ,
Tam giác MAC = MBK MC = MK
Mặt khác DM vuông góc với CK
tam giác DCK cân
Kẻ MH vuông góc với CD .
Tam giác MHD = MBD MH = MB = a
SMCD =CD.MH ≥ AB.MH = 2a.a= a2
SMCD = a2 CD vuông góc với Ax khi đó = 450 ; =450.
Vậy min SMCD = a2 . Các điểm C,D được xác định trên Ax; By sao cho AC = BD =a .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA ta lấy theo thứ tự các điểm E,F,G,H sao cho AE = BF = CG = DH . Xác định vị trí của các điểm E, F,G,H sao cho tứ giác EFGH có chu vi nhỏ nhất .
Cho tam giác ABC có là góc tù , điểm D di chuyển trên cạnh BC . Xác định vị trí của điểm D sao cho tổng các khoảng cách từ B và C đến đường thẳng AD có giá trị lớn nhất .
Trong các hình bình hành có hai đường chéo bằng 6 cm và 8 cm, hình nào có diện tích lớn nhất? Tính diện tích lớn nhất đó.