Một lớp có 40 học sinh, tỉ lệ của số học sinh nam và số học sinh nữ trong lớp là \(\frac{2}{3}\). Tính số học sinh nam và số học sinh nữ trong lớp.
Lời giải
Gọi số học sinh nam và số học sinh nữ của lớp lần lượt là x và y (học sinh), (x, y ∈ ℕ*).
Theo đề bài lớp có 40 học sinh và tỉ lệ số học sinh nam và số học sinh nữ là \(\frac{2}{3}\) nên ta có:
x + y = 40 và \(\frac{{\rm{x}}}{{\rm{y}}}\) = \(\frac{2}{3}\).
Từ tỉ lệ thức \(\frac{{\rm{x}}}{{\rm{y}}}\) = \(\frac{2}{3}\) ta có x = \(\frac{2}{3}\)y ( tính chất tỉ lệ thức )
Do x + y = 40 nên \(\frac{2}{3}\)y + y = 40
⇒ \(\left( {\frac{2}{3} + 1} \right)\)y = 40
⇒ \(\frac{5}{3}\)y = 40
⇒ y = 40 : \(\frac{5}{3}\) = 24
⇒ x = 40 – 24 = 16
Vậy lớp có 16 học sinh nam và 24 học sinh nữ.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Lớp 7C có 35 học sinh trong đó có 20 học sinh nam. Tỉ số giữa số học sinh nam và số học sinh nữ của lớp là:
A. \[\frac{4}{3}\];
B. \(\frac{7}{4}\);
C. \(\frac{3}{4}\);
D. \(\frac{3}{7}\).
Nếu \(\frac{{\rm{x}}}{{\rm{4}}} = \frac{{\rm{y}}}{{\rm{3}}} = \frac{{\rm{z}}}{{\rm{5}}}\) và z = 4 thì x và y là những số nào?
A. x = \(\frac{{14}}{5}\), y = \(\frac{{12}}{5}\);
B. x = \(\frac{{16}}{5}\), y = \(\frac{{12}}{5}\);
C. x = \(\frac{{16}}{5}\), y = \(\frac{{14}}{5}\);
D. x = \(\frac{{12}}{5}\), y = \(\frac{{16}}{5}\).
Để trộn vữa lát nền, bác An trộn theo tỉ lệ cứ 6 phần cát thì trộn với 2 phần vôi và 1 phần xi măng. Bác An dùng 10 kg cát để trộn. Gọi số
ki – lô – gam vôi và xi măng cần dùng lần lượt là x và y.
a) Hãy lập dãy tỉ số bằng nhau của cát, vôi và xi măng mà bác An cần dùng.
Tìm thành phần chưa biết của tỉ lệ thức sau:
a) \(\frac{{\rm{z}}}{8} = \frac{3}{2}\);Cho đẳng thức x = 2y với x, y ≠ 0. Tỉ lệ thức nào sau đây đúng?
A. \(\frac{{\rm{x}}}{2} = \frac{{\rm{y}}}{1}\);
B. \(\frac{{\rm{x}}}{{\rm{y}}} = \frac{1}{2}\);
C. \(\frac{{\rm{x}}}{1} = \frac{{\rm{y}}}{2}\);
D. \(\frac{{\rm{y}}}{{\rm{x}}} = \frac{2}{1}\).
Lập tất cả các tỉ lệ thức có thể có được từ các đẳng thức sau:
b) 0,15 . 12,4 = 3,1 . 0,6.
Lập tất cả các tỉ lệ thức có thể có được từ các đẳng thức sau:
a) 0,5 . 42 = 3 . 7;
Cho tỉ lệ thức \(\frac{2}{3}\) = \(\frac{{\rm{x}}}{{10}}\). Số x là:
A. 6;
B. \(\frac{{20}}{3}\);
C. \(\frac{{16}}{3}\);
D. 7.