Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:
⇔ 15 – 6x > 15 (Nhân cả hai vế với 3 > 0, BPT không đổi chiều)
⇔ -6x > 15 – 15 (Chuyển vế và đổi dấu hạng tử 15)
⇔ -6x > 0
⇔ x < 0 (Chia cả hai vế với -6 < 0, BPT đổi chiều)
Vậy nghiệm của bất phương trình là x < 0.
⇔ 8 – 11x < 13.4 (Nhân cả hai vế với 4 > 0, BPT không đổi chiều)
⇔ 8 – 11x < 52
⇔ -11x < 52 – 8 (Chuyển vế và đổi dấu hạng tử 8)
⇔ -11x < 44
⇔ x > 44 : (-11) (Chia cả hai vế cho -11 < 0, BPT đổi chiều
⇔ x > -4.
Vậy bất phương trình có nghiệm x > -4.
⇔ 3(x – 1) < 2(x – 4) (Nhân cả hai vế với 12 > 0, BPT không đổi chiều)
⇔ 3x – 3 < 2x – 8
⇔ 3x – 2x < -8 + 3 (Chuyển vế và đổi dấu 2x và -3)
⇔ x < -5
Vậy bất phương trình có tập nghiệm x < -5.
⇔ 5(2 – x) < 3(3 – 2x) (Nhân cả hai vế với 15 > 0, BPT không đổi chiều)
⇔ 10 – 5x < 9 – 6x
⇔ 6x – 5x < 9 – 10 (Chuyển vế và đổi dấu -6x và 10)
⇔ x < -1.
Vậy bất phương trình có tập nghiệm x < -1.
Kiến thức áp dụng
+ Ta có thể nhân hai vế của bất phương trình với cùng một số khác 0 và lưu ý:
Giữ nguyên chiều bất phương trình nếu số đó dương.
Đổi chiều bất phương trình nếu số đó âm.
+ Ta có thể một hạng tử từ vế này sang vế khác và phải đổi dấu hạng tử đó.
+ Khi trình bày, không cần ghi câu giải thích.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:
a) 2x - 3 > 0 ; b) 3x + 4 < 0
c) 4 - 3x ≤ 0 ; d) 5 - 2x ≥ 0
Tìm x sao cho:
a) Giá trị của biểu thức 2x - 5 không âm.
b) Giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5.
Lưu ý:
- không âm tức là ≥ 0
- không lớn hơn tức là ≤
Giải các bất phương trình (theo quy tắc chuyển vế):
a) x - 5 > 3
b) x - 2x < -2x + 4
c) -3x > -4x + 2
d) 8x + 2 < 7x - 1
Giải các bất phương trình:
a) 2x - 1 > 5 ; b) 3x - 2 < 4
c) 2 - 5x ≤ 17 ; d) 3 - 4x ≥ 19
Hình vẽ sau biểu diễn tập nghiệm của bất phương trình nào? (Kể ba bất phương trình có cùng tập nghiệm).
Giải các bất phương trình (theo quy tắc nhân):
a) 0,3x > 0,6 ;
b) -4x < 12;
c) -x > 4 ;
d) 1,5x > -9.
Giải các bất phương trình sau (dùng quy tắc nhân):
a) 2x < 24;
b) -3x < 27.
Giải bất phương trình - 4x – 8 < 0 và biểu diễn tập nghiệm trên trục số.
Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:
a) 1,2x < -6 ; b) 3x + 4 > 2x + 3
Giải các bất phương trình sau:
a) x + 12 > 21;
b) -2x > -3x – 5.
Trong các bất phương trình sau, hãy cho biết bất phương trình nào là bất phương trình bậc nhất một ẩn:
a) 2x – 3 < 0;
b) 0.x + 5 > 0;
c) 5x – 15 ≥ 0;
d) x2 > 0.
Giải các bất phương trình:
a) 8x + 3(x + 1) > 5x - (2x - 6)
b) 2x(6x - 1) > (3x - 2)(4x + 3)
Giải thích sự tương đương:
a) x + 3 < 7 ⇔ x – 2 < 2;
b) 2x < - 4 ⇔ -3x > 6.
Đố: Kiểm tra xem giá trị x = -2 có là nghiệm của bất phương trình sau không?
a) x + 2x2 – 3x3 + 4x4 – 5 < 2x2 – 3x3 + 4x4 – 6;
b) (-0,001)x > 0,003.