IMG-LOGO

Câu hỏi:

20/07/2024 306

Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD, AC, AD tại G, H, F. Chọn kết luận sai?

A. ΔBGE ~ ΔHGI

Đáp án chính xác

B. ΔGHI ~ ΔBAI

C. ΔBGE ~ ΔDGF

D. ΔAHF ~ ΔCHE

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Có ABCD là hình bình hành nên: AD // BC, AB // DC

Xét ΔBGE và ΔDGF có:

BGE^=DGF^ (đối đỉnh)

EBG^=FDG^ (so le trong)

=> ΔBGE ~ ΔDGF (g-g) nên C đúng

Xét ΔAHF và ΔCHE có:

AHF^=CHE^ (đối đỉnh)

HAF^=HCE^ (so le trong)

=> ΔAHF ~ ΔCHE (g-g) nên D đúng

Lại có GH // AB IHG^=IAB^ (đồng vị)

Xét ΔGHI và ΔBAI có

Chung góc I

IHG^=IAB^ (cmt)

=> ΔGHI ~ ΔBAI (g-g)

Suy ra B đúng

Chỉ có A sai.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.

2. Chọn kết luận đúng.

Xem đáp án » 13/03/2022 794

Câu 2:

Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.

1. Chọn khẳng định đúng.

Xem đáp án » 13/03/2022 727

Câu 3:

Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho DME^=ABC^.

1. Tính BD.CE bằng

Xem đáp án » 13/03/2022 720

Câu 4:

Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho DME^=ABC^.

2. Góc BDM bằng với góc nào dưới đây?

Xem đáp án » 13/03/2022 427

Câu 5:

Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn khẳng định sai.

Xem đáp án » 13/03/2022 427

LÝ THUYẾT

1. Định lí

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

- Ví dụ 1. Cho tam giác ABC và các đường cao BH, CK. Chứng minh ∆ABH~ ∆ ACK.  

Lời giải:

   Bài 7: Trường hợp đồng dạng thứ ba - Luyện tập 1 (trang 79-80) - Luyện tập 2 (trang 80) (ảnh 1)

Xét ∆ABH và ∆ACK có:

A^chungAHB^=AKC^=900

Suy ra: ∆ABH ~∆ ACK.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »