Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 436

Số 360 khi phân tích được thành thừa số nguyên tố, hỏi tích đó có bao nhiêu thừa số là số nguyên tố?

A. 3

Đáp án chính xác

B.4

C. 5

D.6

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Ta phân tích 360 ra thừa số nguyên tố bằng cách viết rẽ nhánh như sau:

3

3

9

2

5

2

2

18

36

10

360

3

3

9

2

5

2

2

18

36

10

360

Ta có: 360 = 36 . 10

Do đó: 360 = 2 . 2 . 2 . 3 . 3 . 5 = 2

3. 32. 5

Vậy khi phân tích 360 ra thừa số nguyên tố, tích đó có ba thừa số là số nguyên tố.

Chọn đáp án A.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi phân tích các số 2 150; 1 490; 2 340 ra thừa số nguyên tố thì số nào có chứa tất cả các thừa số nguyên tố 2, 3 và 5?

Xem đáp án » 17/03/2022 573

Câu 2:

Một hình vuông có diện tích là 5 929 m2. Tính cạnh của hình vuông đó.

Xem đáp án » 17/03/2022 399

Câu 3:

 Trong các số sau, số nào là tích của ba số tự nhiên liên tiếp?

Xem đáp án » 17/03/2022 319

Câu 4:

 Cho a2. b . 7 = 140, với a, b là các số nguyên tố. Vậy a có giá trị bằng bao nhiêu?

Xem đáp án » 17/03/2022 236

LÝ THUYẾT

I. Cách tìm một ước nguyên tố của một số 

Để tìm một ước nguyên tố của số tự nhiên n lớn hơn 1, ta có thể làm như sau: lần lượt thực hiện phép chia n cho các số nguyên tố theo thứ tự tăng dần 2, 3, 5, 7, 11, 13, …

Khi đó, phép chia hết đầu tiên cho ta số chia là một ước nguyên tố của n.

Ví dụ: Tìm một ước nguyên tố của 217.

Lời giải:

Theo dấu hiệu chia hết, số 217 không chia hết cho các số nguyên tố 2, 3, 5. Ta có: 217 = 7 . 31. Vì thế 7 là một ước nguyên tố của 217.

II. Phân tích một số ra thừa số nguyên tố

+ Phân tích một số tự nhiên lớn hơn 1 ta thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

Lưu ý: Khi phân tích một số ra thừa số nguyên tố ta nên chia mỗi số trong khi phân tích cho ước nguyên tố nhỏ nhất của nó.

Cứ tiếp tục chia như thế cho đến khi được thương là 1.

+ Ta có thể phân tích một số ra thừa số nguyên tố bằng cách viết “rẽ nhánh” và “theo cột dọc”. 

Ví dụ: Phân tích số 40 ra thừa số nguyên tố bằng cách viết “rẽ nhánh” và “theo cột dọc”.

Lời giải:

+ Cách viết "rẽ nhánh":

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Do đó: 40 = 2 . 2 . 2 . 5 = 23 . 5

+ Cách viết "theo cột dọc":

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều 

Vậy ta phân tích được: 40 = 2 . 2 . 2 . 5 = 23 . 5. 

Chú ý:

+ Dạng phân tích ra thừa số nguyên tố của một số nguyên tố là chính số đó.

+ Mọi hợp số đều phân tích được ra thừa số nguyên tố.

+ Thông thường, khi phân tích một số tự nhiên ra thừa số nguyên tố, các ước nguyên tố được viết theo thứ tự tăng dần.

+ Ngoài cách làm như trên, ta cũng có thể phân tích một số ra thừa số nguyên tố bằng cách viết số đó thành tích của hai thừa số một cách linh hoạt.

Ví dụ: Phân tích số 450 ra thừa số nguyên tố. 

Ta có: 450 = 9 . 50 

Lý thuyết Toán 6 Bài 11: Phân tích một số ra thừa số nguyên tố | Lý thuyết Toán lớp 6 chi tiết Cánh diều

Vậy 450 = 3 . 3 . 2 . 5 . 5 = 2 . 32 . 52

Nhận xét: Dù phân tích một số ra thừa số nguyên tố bằng cách nào thì cuối cùng ta cũng được cùng một kết quả.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »