Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 280

Một căn phòng hình chữ nhật dài 72 dm, rộng 56 dm. Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Hỏi viên gạch có độ dài lớn nhất là bao nhiêu?

A.8 dm

Đáp án chính xác

B.10 dm

C.6 dm

D.12 dm

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Gọi chiều dài viên gạch là x,

Để lát kín căn phòng mà không có viên gạch nào bị cắt xén thì x phải là ước của chiều dài và chiều rộng căn phòng.

Hay 72 ⁝ x và 56 ⁝ x

Suy ra x là ước chung của 72 và 56.

Mà x là lớn nhất nên x = ƯCLN(72, 56).

Ta có: 72 = 23. 32

56 = 23. 7

Do đó: x = ƯCLN(72, 56) = 23= 8 (t/m).

Vậy để lát kín căn phòng mà không có viên gạch nào bị cắt xén thì độ dài viên gạch lớn nhất là 8 dm.

Chọn đáp án A.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một căn phòng hình chữ nhật dài 680 cm, rộng  480 cm. Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Hỏi viên gạch có độ dài lớn nhất là bao nhiêu?

Xem đáp án » 17/03/2022 541

Câu 2:

Lớp 9A có 45 học sinh, lớp 9B có 42 học sinh, lớp 9C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không lớp nào có người lẻ hàng. Số hàng dọc nhiều nhất có thể xếp được là:

Xem đáp án » 17/03/2022 409

Câu 3:

Một đội y tế có 36 bác sĩ và 108 y tá. Có thể chia đội y tế đó nhiều nhất thành mấy tổ để các bác sĩ cũng như các y tá được chia đều vào mỗi tổ?

Xem đáp án » 17/03/2022 279

Câu 4:

Hoa có 48 viên bi đỏ, 30 viên bi xanh và 60 viên bi vàng. Hoa muốn chia đều số bi vào các túi, sao cho mỗi túi có đủ 3 loại bi. Hỏi Hoa có thể chia vào nhiều nhất bao nhiêu túi mà mỗi túi có số bi mỗi màu bằng nhau.

Xem đáp án » 17/03/2022 210

LÝ THUYẾT

I. Ước chung và ước chung lớn nhất 

1. Ước chung: Số tự nhiên n được gọi là ước chung của hai số a và b nếu n vừa là ước của a vừa là ước của b.

Quy ước: Viết tắt ước chung là ƯC.

Kí hiệu: Tập hợp các ước chung của a và b là ƯC(a, b).

Ví dụ: Ta có: 

Các ước của 8 là: 1, 2, 4, 8

Các ước của 12 là: 1, 2, 3, 4, 6, 12

Do đó các ước chung của 8 và 12 là: 1, 2, 4.

Vậy ƯC(8, 12) = {1; 2; 4} .

Chú ý: Số tự nhiên n được gọi là ước chung của ba số a, b, c nếu n là ước của cả ba số a, b, c. 

Ví dụ: Số 14 chia hết cho 7 nên 7 là ước của 14, 21 chia hết cho 7 nên 7 là ước của 21, 49 chia hết cho 7 nên 7 là ước của 49. Vậy 7 là ước chung của ba số 14, 21, 49. 

2. Ước chung lớn nhất: Số lớn nhất trong các ước chung của hai số a và b được gọi là ước chung lớn nhất của a và b.

Quy ước: Viết tắt ước chung lớn nhất là ƯCLN.

Kí hiệu: ước chung lớn nhất của a và b là ƯCLN(a, b). 

Ví dụ: Trong các ước chung của 8 và 12 là 1, 2, 4 thì 4 là số lớn nhất nên 4 là ước chung lớn nhất của 8 và 12. Ta viết ƯCLN(8, 12) = 4.

3. Tìm ước chung của hai số khi biết ƯCLN của hai số đó

Ước chung của hai số là ước của ước chung lớn nhất của chúng. 

Ví dụ: Biết ƯCLN (a, b) = 60. Tìm tất cả các số có hai chữ số là ước chung của a và b.

Lời giải:

Vì ước chung của a và b đều là ước của ƯCLN (a, b) = 60 nên tất cả các số có hai chữ số là ước chung của a và b là: 10, 12, 15, 20, 30, 60.

II. Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố 

Các bước tìm ƯCLN bằng cách phân tích ra thừa số nguyên tố:

Bước 1. Phân tích mỗi số ra thừa số nguyên tố

Bước 2. Chọn ra các thừa số nguyên tố chung

Bước 3. Với mỗi thừa số nguyên tố chung, ta chọn lũy thừa với số mũ nhỏ nhất

Bước 4. Lấy tích của các lũy thừa đã chọn, ta nhận được ước chung lớn nhất cần tìm.

Ví dụ: Tìm ƯCLN(54, 90).

+ Phân tích các số ra thừa số nguyên tố

54 = 2.33

90 = 2.32.5

Thừa số nguyên tố chung là 2 và 3. Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 3 là 2.

Vậy ƯCLN (54, 90) = 2.32 = 18.

Chú ý: 

+ Nếu hai số đã cho không có thừa số nguyên tố chung thì ƯCLN của chúng bằng 1.

+ Nếu  Lý thuyết Toán 6 Bài 12: Ước chung và ước chung lớn nhất | Lý thuyết Toán lớp 6 chi tiết Cánh diều thì ƯCLN(a, b) = b. Chẳng hạn, ƯCLN(48, 16) = 16.

III. Hai số nguyên tố cùng nhau

1. Hai số nguyên tố cùng nhau

Hai số nguyên tố cùng nhau là hai số có ước chung lớn nhất bằng 1.

Ví dụ: Hai số 14 và 33 là hai số nguyên tố cùng nhau vì ƯCLN(14, 33) = 1. 

2. Phân số tối giản

+ Phân số tối giản là phân số có tử và mẫu là hai số nguyên tố cùng nhau.

Ví dụ: Ta có: ƯCLN(4, 9) = 1 nên phân số Lý thuyết Toán 6 Bài 12: Ước chung và ước chung lớn nhất | Lý thuyết Toán lớp 6 chi tiết Cánh diềulà phân số tối giản.  

+ Ta có thể rút gọn một phân số về phân số tối giản bằng cách chia cả tử và mẫu của phân số đó cho ƯCLN của chúng. 

Ví dụ: Rút gọn phân số  Lý thuyết Toán 6 Bài 12: Ước chung và ước chung lớn nhất | Lý thuyết Toán lớp 6 chi tiết Cánh diều về phân số tối giản.

Ta có: ƯCLN(16, 20) = 4. Vậy  Lý thuyết Toán 6 Bài 12: Ước chung và ước chung lớn nhất | Lý thuyết Toán lớp 6 chi tiết Cánh diều.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »