A.23. 33
B.– 23. 33
C.63
D.– 63
(– 2) . (– 2) . (– 2) . (– 3) . (– 3) . (– 3)
= [(– 2) . (– 3)] . [(– 2) . (– 3)] . [(– 2) . (– 3)]
= 6 . 6 . 6 = 63.
Chọn đáp án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
I. Phép nhân hai số nguyên khác dấu
Để nhân hai số nguyên khác dấu, ta làm như sau:
Bước 1. Bỏ dấu “–” trước số nguyên âm, giữ nguyên số nguyên còn lại
Bước 2. Tính tích của hai số nguyên dương nhận được ở Bước 1
Bước 3. Thêm dấu “–” trước kết quả nhận được ở Bước 2, ta có tích cần tìm.
Chú ý: Tích của hai số nguyên khác dấu là số nguyên âm.
Ví dụ: (– 6) . 7 = – (6 . 7) = – 42
20 . (– 10) = – (20 . 10) = – 200
II. Phép nhân hai số nguyên cùng dấu
1. Phép nhân hai số nguyên dương
Nhân hai số nguyên dương chính là nhân hai số tự nhiên khác 0.
Ví dụ: 4 . 6 = 24; 16 . 2 = 32.
2. Phép nhân hai số nguyên âm
Để nhân hai số nguyên âm, ta làm như sau:
Bước 1. Bỏ dấu “–” trước mỗi số
Bước 2. Tính tích của hai số nguyên dương nhận được ở Bước 1, ta có tích cần tìm.
Chú ý: Tích của hai số nguyên cùng dấu là số nguyên dương.
Ví dụ: (– 5) . (– 9) = 5 . 9 = 45
(– 20) . (– 6) = 20 . 6 = 120
Chú ý: Cách nhận biết dấu của tích
(+) . (+) → (+)
(–) . (–) → (+)
(+) . (–) → (–)
(–) . (+) → (–)
III. Tính chất của phép nhân các số nguyên
Giống như phép nhân các số tự nhiên, phép nhân các số nguyên cũng có các tính chất: giao hoán; kết hợp; nhân với số 1; phân phối của phép nhân đối với phép cộng, phép trừ.
+ Tính chất giao hoán: a . b = b . a
+ Tính chất kết hợp: (a . b) . c = a . (b . c)
+ Tính chất nhân với số 1: a . 1 = 1 . a = a
+ Tính chất phân phối của phép nhân đối với phép cộng: a . (b + c) = a . b + a . c
Tính chất phân phối của phép nhân đối với phép trừ: a . (b – c) = a . b – a . c
Chú ý:
a . 0 = 0 . a = 0
a . b = 0 thì hoặc a = 0 hoặc b = 0
Ví dụ: Tính
a) (– 9) . 4 . (– 5);
b) (– 127 086) . 674 . 0;
c) (– 4) . 7 + (– 4) . 3.
Lời giải:
a) (– 9) . 4 . (– 5) = (– 9) . [4 . (– 5)] = (– 9) . (– 20) = 9 . 20 = 180
b) (– 127 086) . 674 . 0 = 0
c) (– 4) . 7 + (– 4) . 3 = (– 4) . (7 + 3) = (– 4) . 10 = – 40
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1