Chứng minh phân thức là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 7n - 5 và 3n - 2
⇒ (7n - 5)⋮ d và (3n - 2)⋮ d
⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Chứng minh rằng với mọi số nguyên n thì phân số là phân số tối giản
Cho phân thức là phân thức tối giản. Chứng minh phân thức là phân thức tối giản