Cho 43 số nguyên, trong đó tổng của 7 số bất kì là một số nguyên âm. Nhận xét nào sau đây đúng về tổng của 43 số đó.
A. Tổng 43 số đó là số nguyên âm
B. Tổng của 43 số đó là số nguyên dương
C. Tổng của 43 số đố là số 0
D. Tổng của 43 số đó là một số lớn hơn 1 000
Đáp án A
Trong 43 số nguyên ta có tổng của 7 số nguyên bất kì là một số nguyên âm nên trong đó có ít nhất một số nguyên âm. Gọi số nguyên âm này là a (a < 0). Còn lại 42 số nguyên nghĩa là có 6 tổng của 7 số nguyên âm bất kì mà tổng 7 số nguyên bất kì là một số nguyên âm nên 6 tổng này cũng là một số nguyên âm.
Vì vậy tổng của 43 số đó là số nguyên âm.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Phát biểu nào sau đây đúng về kết quả của phép tính: (-35) – (-60)
So sánh kết quả hai biểu thức sau: A = – (12 – 25) và B = (-12 + 25);
Tính tổng sau: (-1) + (-2) + 3 + 4 + … + (-97) + (-98) + 99 + 100.
Em hãy dùng số nguyên âm để giải bài toán sau:
Một chiếc tàu ngầm đang ở độ sâu 20 m, tàu tiếp tục lặn thêm 15 m. Hỏi khi đó tàu ngầm ở độ sâu là bao nhiêu mét?
Một tòa nhà có tám tầng được đánh số theo thứ tự 0 (tầng mặt đất), 1, 2, 3, ..., 7 và ba tầng hầm được đánh số -1; -2; -3. Em hãy dùng phép cộng các số nguyên để diễn tả hai tình huống sau đây:
Một thang máy đang ở tầng – 3, nó đi lên 5 tầng. Hỏi thang máy dừng lại ở tầng mấy?
(Ở một số tòa nhà, tầng mặt đất còn được gọi là tầng G).
Mũi khoan một giàn khoan trên biển đang ở độ cao 5m so với mực nước biển, chú công nhân điều khiển nó hạ xuống 10m. Vậy mũi khoan ở độ cao nào (so với mực nước biển) sau khi hạ?
Trong các biểu thức dưới đây, giá trị của biểu thức nào là lớn nhất
M = [(-3) + 4] + 2;
N = (-3) + (4 + 2);
P = [(-3) + 2] + 4.
Tính giá trị của biểu thức (-156) - x, khi:
a) x = -26;
b) x = 76;
c) x = (- 28) – (- 143).
Trong các phát biểu sau, có bao nhiêu phát biểu đúng, bao nhiêu phát biểu nào sai?
a) Tổng của một số nguyên âm và một số nguyên dương là một số nguyên âm.
b) Tổng của một số nguyên dương và một số nguyên âm là một số nguyên dương.
c) Hai số đối nhau có tổng bằng 0.
Thẻ tín dụng trả sau của bác Tám đang ghi nợ 2 000 000 đồng, sau khi bác Tám nộp vào 2 000 000 đồng thì bác Tám có bao nhiêu tiền trong tài khoản? Hãy dùng số nguyên để giải thích.
Archimedes (Ác-si-mét) là nhà bác học người Hi Lạp, ông sinh năm 287 TCN và mất năm 212 TCN. Em hãy cho biết Archimedes mất năm bao nhiêu tuổi?
Trong giờ học nhóm, ba bạn An, Bình, Chi đã lần lượt phát biểu như sau:
a) Bạn An: “Tổng của hai số nguyên dương luôn là một số nguyên dương”.
b) Bạn Bình: “Tổng của hai số nguyên âm luôn là một số nguyên âm”.
c) Bạn Chi: “Tổng của hai số nguyên cùng dấu luôn cùng dấu với hai số nguyên đó”.
Bạn nào phát biểu đúng, bạn nào phát biểu sai?
Thực hiện phép tính: (-2) + (-4) + (-6) + (-8) + (-10) + 8 + 10 + 12;
1. Cộng hai số nguyên cùng dấu
Quy tắc cộng hai số nguyên âm
Muốn cộng hai số nguyên âm, ta cộng phần số tự nhiên của chúng với nhau rồi đặt dấu “-“ trước kết quả.
Ví dụ 1. Tính:
a) (-23) + (-55); b) 43 + 23; c) (-234) + (-546).
Lời giải
a) (-23) + (-55) = - (23 + 55) = - 78;
b) 43 + 23 = 66;
c) (-234) + (-546) = - (234 + 546) = - 780.
2. Cộng hai số nguyên khác dấu
Hai số đối nhau:
Hai số nguyên a và b được gọi là đối nhau nếu a và b nằm khác phía với điểm 0 và có cùng khoảng cách đến gốc 0.
Chú ý:
Ta quy ước số đối của 0 là chính nó.
Tổng của hai số đối nhau luôn bằng 0.
Ví dụ 2. Tìm số đối của -3; 4; -5; 8; -12.
Lời giải
Số đối của – 3 là 3;
Số đối của 4 là -4;
Số đối của – 5 là 5;
Số đối của 8 là – 8;
Số đối của -12 là 12.
Quy tắc cộng hai số nguyên khác dấu:
+ Hai số nguyên đối nhau thì có tổng bằng 0.
+ Muốn cộng hai số nguyên khác dấu (không đối nhau), ta tìm hiệu hai phân số tự nhiên của chúng (số lớn trừ số nhỏ) rồi đặt trước hiệu tìm được dấu của số có phần số tự nhiên lớn hơn.
Ví dụ 3. Thực hiện các phép tính:
a) 312 + (-134); b) (– 254) + 128; c) 2 304 + (-115).
Lời giải
a) 312 + (-134) = 312 – 134 = 178;
b) (– 254) + 128 = - ( 254 – 128) = -128;
c) 2 304 + (-115) = 2 304 – 115 = 2 189.
3. Tính chất của phép cộng
Phép cộng số nguyên có tính chất sau:
+ Giao hoán: a + b = b + a;
+ Kết hợp: (a + b) + c = a + (b + c).
Ví dụ 4. Tính một cách hợp lí:
a) (-350) + (-296) + 50 + 96;
b) (-3) + 5 + (-7) + 5.
Lời giải
a) (-350) + (-296) + 50 + 96
= [(-350) + 50] + [(-296) + 96]
= (-300) + (-200)
= -500.
b) (-3) + 5 + (-7) + 5
= [(-3) + (-7)] + [5 + 5]
= (-10) + 10
= 0.
4. Trừ hai số nguyên
Quy tắc trừ hai số nguyên
Muốn trừ số nguyên a cho số nguyên b, ta cộng số nguyên a với số đối của số nguyên b:
a – b = a + (-b).
Ví dụ 5. Tính:
a) 15 – 7; b) 8 – 9; c) 23 – 154; d) 12 – 125 – 83.
Lời giải
a) 15 – 7 = 8;
b) 8 – 9 = 8 + (-9) = - (9 – 8) = -1;
c) 23 – 154 = - ( 154 – 23) = -131;
d) 12 – 125 – 83
= 12 + (-125) + (-83)
= -(125 – 12) + (-83)
= (-113) + (-83)
= -(113 + 83)
= - 196.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1