Hãy quan sát Hình 4.5.
1. Hãy kể tên các đường chéo chính của hình lục giác đều ABCDEF.
2. Hãy so sánh độ dài các đường chéo chính với nhau.
1. Các đường chéo chính của hình: AD, BE, CF
2. Dùng thước thẳng đo, ta thấy AD = BE = CF hay độ dài các đường chéo chính bằng nhau.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong các hình vẽ dưới đây, Có bao nhiêu hình là hình lục giác đều?
Cho phát biểu sau: “……….. là hình có ba cạnh bằng nhau và ba góc bằng nhau bằng . Điền từ thích hợp vào chỗ trống.
Nối cột A với cột B để được các bước vẽ hình vuông 7cm một cách chính xác:
Cột A |
| Cột B |
1) Bước 1 | a) Vẽ đường thẳng đi qua B vuông góc với AB. Trên đường thẳng này lấy điểm C sao cho BC bằng 7cm. | |
2) Bước 2 | b) Nối điểm B với điểm C lại ta được hình vuông ABCD cạnh 7cm. | |
3) Bước 3 | c) Vẽ cạnh AB bằng 7cm | |
4) Bước 4 | d) Vẽ đường thẳng đi qua A vuông góc với AB. Trên đường thẳng này lấy điểm D sao cho AD bằng 7cm |
Hình lục giác đều có đường chéo chính dài 18 cm. Số đo cạnh của hình lục giác đều là:
Có bao nhiêu tính chất dưới đây là của hình vuông?
i) Hình vuông có bốn cạnh bằng nhau.
ii) Hình vuông có bốn góc bằng nhau và bằng .
iii) Hình vuông có hai đường chéo bằng nhau.
Sắp xếp các bước vẽ hình tam giác đều cạnh 2cm:
1) Vẽ đường tròn tâm A bán kính 2cm và đường tròn tâm B bán kính 2cm.
2) Vẽ đoạn thẳng AB bằng 2cm.
3) Nối các điểm A với C, B với C ta được tam giác đều ABC cạnh 2 cm.
4) Hai đường tròn tâm A và tâm B cắt nhau tại điểm C.
1. Hình tam giác đều
Trong tam giác đều:
- Ba cạnh bằng nhau.
- Ba góc bằng nhau và bằng 600C.
Ví dụ 1. Trong các hình dưới đây, hình nào là tam giác đều:
Lời giải
Sử dụng thước thẳng đo lần lượt các cạnh của từng hình, ta nhận thấy:
Hình 1 có độ dài các cạnh bằng nhau. Do đó HÌnh 1 là tam giác đều.
2. Hình vuông
Trong hình vuông:
- Bốn cạnh bằng nhau.
- Bốn góc bằng nhau và bằng 900.
- Hai đường chéo bằng nhau.
Ví dụ 2. Vẽ hình vuông ABCD có cạnh bằng 5cm.
Lời giải
Bước 1. Vẽ đoạn thẳng AB = 5cm;
Bước 2. Qua A dựng đường thẳng d vuông góc với AB, qua B dựng đường thẳng d’ vuông góc với AB.
Bước 3. Trên đường thẳng d lấy điểm D sao cho AD = 5cm, trên d’ lấy điểm C sao cho BC = 5cm.
Bước 4. Nối D với C ta được hình vuông ABCD.
3. Hình lục giác đều
Hình lục giác đều có:
- Sáu cạnh bằng nhau.
- Sáu góc bằng nhau, mỗi góc bằng 1200.
- Ba đường chéo chính bằng nhau.
Ví dụ 3. Hãy quan sát hình vẽ:
a) Hãy kể tên các đường chéo chính của hình lục giác đều ABCDEF.
b) Hãy so sánh độ dài các đường chéo chính với nhau.
Lời giải
a) Các đường chéo chính của hình lục giác đều ABCDEF là: AD, BE, CF.
b) Sau khi đo độ dài ta thấy AD = BE = CF = 2,1 cm.
B. Bài tập.
Bài 1. Vẽ tam giác đều cạnh 3cm.
Lời giải
Bước 1. Vẽ đoạn thẳng AB = 3cm.
Bước 2. Dùng compa vẽ đường tròn tâm A bán kính 3cm và đường tròn tâm B bán kính 3 cm.
Bước 3. Hai đường tròn này giao nhau tại C. Nối A với C, B với C ta được tam giác ABC đều.
Bài 2. Người ta muốn đặt một trạm biến áp để đưa điện về sáu ngôi nhà. Phải đặt trạm biến áp ở đâu để khoảng cách từ trạm biến áp đến sáu ngôi nhà đều bằng nhau, biết rằng sáu ngôi nhà ở vị trí sáu đỉnh của lục giác đều.
Lời giải
Phải đặt trạm biến áp ở tâm O hình lục giác đều tạo bởi sáu ngôi nhà.
Vì độ dài các đường chéo chính của hình lục giác đều bằng nhau, mà O là trung điểm của các đường chéo đó nên khoảng cách từ tâm O đến các đỉnh của lục giác đều là bằng nhau hay nếu đặt trạm biến áp ở O thì khoảng cách từ trạm biến áp đến sáu ngôi nhà đều bằng nhau.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1