Nhiệt độ ở thủ đô Ôt-ta-oa, Ca-na-đa (Ottawa, Canada) lúc 7 giờ là −40C, đến 10 giờ tăng thêm 60C. Nhiệt độ ở Ôt-ta-oa lúc 10 giờ là bao nhiêu?
A. -200C
B. 200C
C. -100C
D. 100C
Nhiệt độ ở Ôt-ta-oa lúc 10 giờ là:
(−4) + 6 = 6 – 4 = 2(0C)
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một chiếc chiếc diều cao 30m ( so với mặt đất), sau một lúc độ cao của chiếc diều tăng lên 7m rồi sau đó giảm 4m.4m. Hỏi chiếc diều ở độ cao bao nhiêu mét so với mặt đất sau 2 lần thay đổi?
Mỗi người khi ăn thì sẽ hấp thụ ca-lo và khi hoạt động thì sẽ tiêu hao ca-lo. Bạn Bình dùng phép cộng số nguyên để tính số ca-lo hằng ngày của mình bằng cách xem số ca-lo hấp thụ là số nguyên dương và số ca-lo tiêu hao là số nguyên âm. Em hãy giúp bạn Bình kiểm tra tổng số ca-lo còn lại sau khi ăn sáng và thực hiện các hoạt động (theo số liệu trong bảng dưới đây).
Bác Hà là khách quen của cửa hàng tạp hóa nhà bác Diệp nên có thể mua hàng trước, trả tiền sau. Hôm qua bác Diệp đã cho bác Hà nợ 80 nghìn đồng, hôm nay bác Hà lại muốn nợ 40 nghìn đồng nữa. Em hãy dùng số nguyên để giúp bác Diệp ghi vào sổ số tiền bác Hà còn nợ bác Diệp (đơn vị: nghìn đồng).
Để di chuyền giữa các tầng của toà nhà cao tầng, người ta thường sử dụng thang máy. Tầng có mặt sàn là mặt đất thường được gọi là tầng G, các tầng ở dưới mặt đất lần lượt từ trên xuống được gọi là B1, B2,...Người ta biểu thị vị trí tầng G là 0, tầng hầm B1 là - 1, tầng hầm B2 là – 2, ...
Từ tầng G bác Sơn đi thang máy xuống tầng hầm B1. Sau đó bác đi xuống tiếp 2 tầng nữa. Tìm số nguyên biểu thị vị trí tầng mà bác Sơn đến khi kết thúc hành trình.
1. Cộng hai số nguyên cùng dấu
− Muốn cộng hai số nguyên dương, ta cộng chúng như cộng hai số tự nhiên.
− Muốn cộng hai số nguyên âm, ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả.
− Tổng của hai số nguyên cùng dấu luôn cùng dấu với hai số nguyên đó.
Chú ý:
Cho a, b là hai số nguyên dương, ta có:
(+a) + (+b) = a + b
(−a) + (− b) = − (a + b)
Ví dụ: Thực hiện các phép tính sau:
a) 8 + 12;
b) (−15) + (−9);
c) (−65) + (−35).
Hướng dẫn giải
a) 8 + 12 = 11;
b) (−15) + (−9) = − (15 + 9) = −24;
c) (−65) + (−35) = − (65 + 35) = −100.
2. Cộng hai số nguyên khác dấu
a) Cộng hai số đối nhau
Tổng hai số nguyên đối nhau luôn luôn bằng 0: a + (− a) = 0.
Ví dụ: 20 và −20 là hai số đối nhau.
Khi đó, 20 + (− 20) = 0.
b) Cộng hai số nguyên khác dấu không đối nhau
Muốn cộng hai số nguyên khác dấu không đối nhau, ta làm như sau:
− Nếu số dương lớn hơn số đối của số âm thì ta lấy số dương trừ đi số đối của số âm.
− Nếu số dương bé hơn số đối của số âm thì ta lấy số đối của số âm trừ đi số dương rồi thêm dấu trừ trước kết quả.
Chú ý: Khi cộng hai số nguyên trái dấu:
− Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương.
− Nếu số dương bằng số đối của số âm thì ta có tổng bằng 0.
− Nếu số dương bé hơn số đối của số âm thì ta có tổng âm.
Ví dụ: Thực hiện các phép tính sau:
a) 18 + (−21);
b) (−6) + 12;
c) 25 + (−14).
Hướng dẫn giải
a) 18 + (−21) = − (21 – 18) = − 3;
b) (−6) + 12 = 12 – 6 = 6;
c) 25 + (−14) = 25 – 14 = 11.
3. Tính chất của phép cộng các số nguyên
a) Tính chất giao hoán
Phép cộng các số nguyên có tính chất giao hoán, nghĩa là: a + b = b + a
Chú ý: a + 0 = 0 + a = a.
Ví dụ:
25 + 18 = 18 + 25;
16 + (−35) = (−35) + 16;
(−26) + (−47) = (−47) + (−26).
b) Tính chất kết hợp
Phép cộng các số nguyên có tính chất kết hợp: (a + b) + c = a + (b + c)
Chú ý:
− Tổng (a + b) + c hoặc a + (b + c) là tổng của ba số nguyên a, b, c và viết là a + b + c; với a, b, c là các số hạng của tổng.
− Để tính tổng của nhiều số, ta có thể thay đổi tùy ý thứ tự các số hạng (tính giao hoán), hoặc nhóm tùy ý các số hạng (tính kết hợp) để việc tính toán được đơn giản và thuận lợi hơn.
Ví dụ: Thực hiện các phép tính sau:
a) 25 + (−75) + (−25) + 75;
b) (−2 022) + 2 021 + 21 + (−20).
Hướng dẫn giải
a) 25 + (−75) + (−25) + 75
= 25 + (−25) + (−75) + 75 (tính chất giao hoán)
= [25 + (−25)] + [(−75) + 75] (tính chất kết hợp)
= 0 + 0 = 0.
b) (−2 022) + 2 021 + 21 + (−20)
= (−2 022) + (−20) + 2 021 + 21 (tính chất giao hoán)
= [(−2 022) + (−20)] + (2021 + 21) (tính chất kết hợp)
= (−2042) + 2042 = 0.
4. Phép trừ hai số nguyên
Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b.
a – b = a + (−b)
Chú ý:
− Cho hai số nguyên a và b. Ta gọi a – b là hiệu của a và b (a được gọi là số bị trừ, b là số trừ).
− Phép trừ luôn thực hiện được trong tập hợp số nguyên.
Như vậy, hiệu của hai số nguyên a và b là tổng của a và số đối của b.
Ví dụ: Thực hiện các phép tính sau:
a) 5 – 11;
b) 26 – (–12);
c) (–38) – (–50).
Hướng dẫn giải
a) 5 – 11 = 5 + ( −11) = −6;
b) 26 – (–12) = 26 + 12 = 38;
c) (–38) – (–50) = (−38) + 50 = 50 – 38 = 12.
5. Quy tắc dấu ngoặc
Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:
• có dấu “+”, thì vẫn giữ nguyên dấu của các số hạng trong ngoặc
+ (a + b – c) = a + b – c
• có dấu “–”, thì phải đổi dấu tất cả các số hạng trong ngoặc
− (a + b – c) = − a − b + c
Ví dụ: Tính M = (− 25) + (−2) – (−75) + (−8).
Hướng dẫn giải
M = (− 25) + (−2) − (−75) + (−8)
= [(− 25) − (−75)] + [(−2) + (−8)]
= − (25 + 75) + (− 10)
= (− 100) + (− 10)
= − (100 + 10) = −110.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1