IMG-LOGO

Câu hỏi:

19/07/2024 212

+) Tích ba số nguyên âm là một số nguyên ..(1)..

+) Tích hai số nguyên âm với một số nguyên dương là một số nguyên …(2)…

Từ thích hợp để điền vào hai chỗ chấm trên lần lượt là:

A. âm, âm

B. dương, âm

C. âm, dương

Đáp án chính xác

D. dương, dương

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Tích ba số nguyên âm là một số nguyên âm.

Tích hai số nguyên âm với một số nguyên dương là một số nguyên dương

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn câu đúng.

Xem đáp án » 07/04/2022 199

Câu 2:

Chọn câu sai.

Xem đáp án » 07/04/2022 196

Câu 3:

Cho (−4).(x − 3) = 20. Tìm x:

Xem đáp án » 07/04/2022 194

Câu 4:

Khẳng định nào sau đây đúng:

Xem đáp án » 07/04/2022 192

Câu 5:

Tìm x∈Z biết (1 − 3x)3 = −8.

Xem đáp án » 07/04/2022 186

Câu 6:

Công ty Ánh Dương có lợi nhuận ở mỗi tháng trong Quý I là – 30 triệu đồng. Trong Quý II, lợi nhuận mỗi tháng của công ty là 70 triệu đồng. Sau 6 tháng đầu năm, lợi nhuận của công ty Ánh Dương là?

Xem đáp án » 07/04/2022 184

Câu 7:

Tính (−42).(−5) được kết quả là:

Xem đáp án » 07/04/2022 182

Câu 8:

Tích (−3).(−3).(−3).(−3).(−3).(−3).(−3) bằng

Xem đáp án » 07/04/2022 182

Câu 9:

Chọn câu đúng.

Xem đáp án » 07/04/2022 181

Câu 10:

Tính hợp lý A = −43.18 − 82.43 − 43.100

Xem đáp án » 07/04/2022 179

Câu 11:

Cho Q = −135.17 − 121.17 − 256.(−17), chọn câu đúng.

Xem đáp án » 07/04/2022 178

Câu 12:

Tính nhanh (−5).125.(−8).20.(−2) ta được kết quả là

Xem đáp án » 07/04/2022 176

LÝ THUYẾT

1. Nhân hai số nguyên khác dấu

Quy tắc nhân hai số nguyên khác dấu

− Tích của hai số nguyên khác dấu luôn luôn là một số nguyên âm.

− Khi nhân hai số nguyên khác dấu, ta nhân số dương với số đối của số âm rồi thêm dấu trừ (−) trước kết quả nhận được.

Chú ý: Cho hai số nguyên dương a và b, ta có:

(+ a) . (−b) = − a . b

(− a) . (+ b) = − a . b

Ví dụ: Tính:

a) (−9) . 4;

b) 6 . (−11);

c) (−14) . 50.

Hướng dẫn giải

a) (−9) . 4 = −(9.  4) = − 36;

b) 6 . (−11) = − (6 . 11) = −66;

c) (−14) . 50 = − (14 . 50) = − 700.

2. Nhân hai số nguyên cùng dấu

Quy tắc nhân hai số nguyên cùng dấu

− Khi nhân hai số nguyên cùng dương, ta nhân chúng như nhân hai số tự nhiên.

− Khi nhân hai số nguyên cùng âm, ta nhân hai số đối của chúng.

Chú ý:

• Cho hai số nguyên dương a và b, ta có: (−a) . (−b) = (+a) . (+b) = a . b.

• Tích của hai số nguyên cùng dấu luôn luôn là một số nguyên dương.

Ví dụ: Tính:

a) 15 . 6;

b) (−55) . (−10);

c) (+22) . (+11).

Hướng dẫn giải

a) 15 . 6 = 90;

b) (−55) . (−10) = 55 . 10 = 550;

c) (+22) . (+11) = 22 . 11 = 242.

3. Tính chất của phép nhân các số nguyên

a) Tính chất giao hoán

Phép nhân hai số nguyên có tính chất giao hoán, nghĩa là:

a . b = b . a

Chú ý:

• a . 1 = 1 . a = a;

• a . 0 = 0 . a = 0.

• Cho hai số nguyên x, y:

Nếu x . y = 0 thì x = 0 hoặc y = 0.

Ví dụ: Nếu (a + 5) . (a – 14) = 0 thì

a + 5 = 0 hoặc a – 14 = 0.

Suy ra a = –5 hoặc a = 14.

b) Tính chất kết hợp

Phép nhân các số nguyên có tính chất kết hợp:

(a . b) . c = a . (b . c)

Chú ý: Áp dụng tính chất kết hợp của phép nhân, ta có thể viết tích của nhiều số nguyên:

a . b . c = a . (b . c) = (a . b) . c.

Ví dụ:

[(−4) . (−5)] . 8 = (−4) . [(−5) . 8]

= (−4) . (−5) . 8 = 4 . 5 . 8

= 20 . 8 = 160.

c) Tính chất phân phối của phép nhân đối với phép cộng

Phép nhân số nguyên có tính chất phân phối đối với phép cộng:

a(b + c) = ab + ac

Phép nhân số nguyên có tính chất phân phối đối với phép trừ:

a(b − c) = ab – ac

Ví dụ: Thực hiện phép tính:

(−5) . 29 + (−5) . (−99) + (−5) . (−30).

Hướng dẫn giải

(−5) . 29 + (−5) . (−99) + (−5) . (−30)

= (−5) . [29 + (−99) + (−30)]

= (−5) . [(−70) + (−30)]

= (−5) . (−100)

= 5 . 100

= 500.

4. Quan hệ chia hết và phép chia trong tập hợp số nguyên

Cho a,b và b ≠ 0. Nếu có số nguyên q sao cho a = bq thì

• Ta nói a chia hết cho b, kí hiệu là a ⋮ b.

• Trong phép chia hết, dấu của thương hai số nguyên cũng giống như dấu của tích.

Ta gọi q là thương của phép chia a cho b, kí hiệu là a : b = q.

Ví dụ: Ta có: (−15) = 3 . (−5) nên ta nói:

• (−15) chia hết cho (−5);

• (−15) : (−5) = 3;

• 3 là thương của phép chia (−15) cho (−5).

5. Bội và ước của một số nguyên

Cho a,b . Nếu a ⋮ b thì ta nói a là bội của b là b là ước của a.

Ví dụ: Ta có (−15) ⋮ (−5) nên ta nói (−15) là bội của (−5) và (−5) là ước của (−15).

Nếu c vừa là ước của a, vừa là ước của b thì c cũng được gọi là ước chung của a và b.

Ví dụ: Vì 4 vừa là ước của 8 vừa là ước của 12 nên 4 là ước chung của 8 và 12.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »