Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 202

Cho các phân số \[\frac{6}{{n + 8}};\frac{7}{{n + 9}};\frac{8}{{n + 10}};...;\frac{{35}}{{n + 37}}\]. Tìm số tự nhiên n nhỏ nhất để các phân số trên tối giản.

A. 35      

Đáp án chính xác

B. 34           

C. 37                        

D. 36

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Các phân số đã cho đều có dạng  \[\frac{a}{{a + \left( {n + 2} \right)}}\]

Và tối giản nếu a và n + 2 nguyên tố cùng nhau

Vì: [a + (n + 2)] – a = n + 2

với a = 6; 7; 8;.....; 34; 35

Do đó n + 2 nguyên tố cùng nhau với các số 6; 7; 8;.....; 34; 35

Số tự nhiên n + 2 nhỏ nhất thỏa mãn tính chất này là 37

Ta có n + 2 = 37 nên n = 37 – 2 = 35

Vậy số tự nhiên nhỏ nhất cần tìm là 35

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm phân số tối giản \[\frac{a}{b}\] biết rằng lấy tử cộng với 6, lấy mẫu cộng với 14 thì ta được phân số bằng \[\frac{3}{7}\] .

Xem đáp án » 07/04/2022 294

Câu 2:

Sau khi rút gọn biểu thức  \[\frac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\]ta được phân số \[\frac{a}{b}\]. Tính tổng a + b.

Xem đáp án » 07/04/2022 252

Câu 3:

Rút gọn phân số \[\frac{{4.8}}{{64.\left( { - 7} \right)}}\] ta được phân số tối giản là:

Xem đáp án » 07/04/2022 233

Câu 4:

Tìm phân số bằng với phân số \[\frac{{200}}{{520}}\] mà có tổng của tử và mẫu bằng 306

Xem đáp án » 07/04/2022 231

Câu 5:

Phân số nào dưới đây là phân số tối giant?

Xem đáp án » 07/04/2022 225

Câu 6:

Phân số nào sau đây là kết quả của biểu thức \[\frac{{2.9.52}}{{22.\left( { - 72} \right)}}\] sau khi rút gọn đến tối giản?

Xem đáp án » 07/04/2022 219

Câu 7:

Biểu thức \[\frac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\] sau khi đã rút gọn đến tối giản có mẫu số dương là:

Xem đáp án » 07/04/2022 212

Câu 8:

Hãy chọn phân số không bằng phân số \[\frac{{ - 8}}{9}\] trong các phân số dưới đây?

Xem đáp án » 07/04/2022 209

Câu 9:

Nhân cả tử số và mẫu số của phân số \[\frac{{14}}{{23}}\]  với số nào để được phân số \[\frac{{168}}{{276}}\]?

Xem đáp án » 07/04/2022 205

Câu 10:

Rút gọn biểu thức \[A = \frac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\]

Xem đáp án » 07/04/2022 205

Câu 11:

Rút gọn phân số \[\frac{{600}}{{800}}\] về dạng phân số tối giản ta được:

Xem đáp án » 07/04/2022 198

Câu 12:

Rút gọn phân số \[\frac{{ - 12a}}{{24}},a \in Z\] ta được:

Xem đáp án » 07/04/2022 198

Câu 13:

Viết dạng tổng quát của các phân số bằng với phân số \[\frac{{ - 12}}{{40}}\]

Xem đáp án » 07/04/2022 187

LÝ THUYẾT

1. Tính chất 1

Tính chất 1: Nếu nhân cả tử số và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 1. Cho phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo. Nhân cả tử và mẫu của phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo với 3, ta được:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Khi đó, ta có phân số mới là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo bằng phân số đã cho là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Nhận xét: Có thể biểu diễn số nguyên ở dạng phân số với mẫu số (khác 0) tùy ý.

- Áp dụng tính chất 1, ta có thể quy đồng mẫu số hai phân số bằng cách nhân tử và mẫu mỗi phân số với số nguyên thích hợp.

Ví dụ 2. Có thể biểu diễn số −8 ở dạng phân số có mẫu số là 3 như sau:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Ví dụ 3. Quy đồng mẫu số hai phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Lời giải: 

Quy đồng mẫu số hai phân số ta thực hiện như sau:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Nhận xét: Mẫu số giống nhau ở hai phân số là −56 còn gọi là mẫu số chung của hai phân số.

Khi quy đồng mẫu số hai phân số, có thể có nhiều cách chọn mẫu số chung.

Chú ý: Có thể quy đồng mẫu số của nhiều phân số bằng cách tìm mẫu số chung của nhiều phân số.

Ví dụ 4. Quy đồng mẫu số của ba phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Lời giải: 

Quy đồng mẫu số ba phân số, ta nhân cả tử và mẫu của mỗi phân số nhân với tích hai mẫu số của hai phân số còn lại.

Ta thực hiện như sau:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Mẫu số chung của ba phân số trên là −120.

2. Tính chất 2

Tính chất 2: Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 5. Cho phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo. Chia cả tử và mẫu của phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo cho 3, ta được:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Khi đó, ta có phân số mới là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo bằng phân số đã cho là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Áp dụng tính chất 2, ta có thể rút gọn phân số bằng cách chia cả tử và mẫu cho cùng ước chung khác 1 và −1.

Ví dụ 6. Rút gọn phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Lời giải: 

Chia cả tử và mẫu của phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo cho 9, ta được:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Nhận xét: Sau khi rút gọn ta được phân số mới là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo bằng phân số đã cho là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Chú ý: Khi rút gọn phân số, có thể được nhiều kết quả, nhưng các phân số ở các kết quả đó đều bằng nhau.

Ví dụ 7. Rút gọn phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Lời giải: 

Chia cả tử và mẫu của phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo cho 2, ta được:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Chia cả tử và mẫu của phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo cho 3, ta được:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Chia cả tử và mẫu của phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo cho 6, ta được:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Nhận xét: Khi rút gọn phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo, ta thu được nhiều kết quả như Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo 

Các phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo đều bằng nhau.

Tổng quát: Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo.

Chú ý: Mỗi phân số đều có nhiều phân số bằng nó.

Ví dụ 8. Viết phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo thành phân số có mẫu dương.

Lời giải: 

Phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo có mẫu là số nguyên âm. 

Do đó để viết phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo thành phân số có mẫu dương thì ta chia cả tử và mẫu của phân số này cho cùng một số nguyên âm và là ước chung của 5 và (−8) là (−1).

Khi đó ta có:

Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Vậy phân số Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo được viết thành phân số có mẫu dương là Bài 2: Tính chất cơ bản của phân số | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Câu hỏi mới nhất

Xem thêm »
Xem thêm »