Cho phương trình x2 – (2m + 1)x + m2 + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 sao cho biểu thức có giá trị là số nguyên
A. m = 1
B. m = 2
C. m = −2
D. m = 0
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho Parabol (P): y = x2 và đường thẳng (d): y =mx + 4. Biết đường thẳng (d) luôn cắt đồ thị (P) tại hai điểm phân biệt A, B. Gọi x1; x2 là hoành độ của các điểm A, B. Tìm giá trị lớn nhất của
Cho phương trình x2 – (m + 1)x – 3 = 0 (1), với x là ẩn, m là tham số. Gọi x1; x2 là hai nghiệm của phương trình (1). Đặt . Tìm m khi B đạt giá trị lớn nhất.
Cho phương trình: x2 – 2(m – 1)x + m2 − 3m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1; x2 thỏa mãn x12 + x22 = 8
Tìm m để phương trình 3x2 + 4(m – 1)x + m2 – 4m + 1 = 0 có hai nghiệm phân biệt x1; x2 thỏa mãn:
Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1. Gọi A (x1; y1) và B (x2; y2) là các giao điểm của (d) và (P). Tìm m để biểu thức M = (y1 − 1)( y2 − 1) đạt giá trị lớn nhất.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2x – y – a2 = 0 và parabol (P): y = ax2 (a > 0). Tìm a để (d) cắt (P) tại hai điểm phân biệt A, B. Khi đó có kết luận gì về vị trí của hai điểm A, B
Cho parabol (P): và đường thẳng d: . Gọi A, B là các giao điểm của (P) và d. Tìm tọa độ điểm C trên trục tung cho CA + CB có giá trị nhỏ nhất.
Tìm phương trình đường thẳng (d) đi qua điểm I (0; 1) và cắt parabol (P): y = x2 tại hai điểm phân biệt M và N sao cho MN = 2
Tìm tham số m để đường thẳng d: y = 2x + m và parabol (P): y = 2x2 không có điểm chung
Tìm các giá trị của m để đường thẳng d: y = 2(m – 1)x – m – 1 cắt parabol (P): y = x2 tại hai điểm có hoành độ trái dấu.
Trong mặt phẳng Oxy, cho parabol (P): và đường thẳng (d): x – 2y + 12 = 0. Gọi giao điểm của (d) và (P) là A, B. Tìm tọa độ điểm C nằm trên (P) sao cho tam giác ABC vuông tại C.
Trong mặt phẳng Oxy cho đường thẳng (d): y = kx và parabol (P): . Giả sử đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Tọa độ trung điểm M của đoạn thẳng AB luôn thỏa mãn phương trình nào dưới đây?
Tìm các giá trị của m để phương trình x2 – mx + m2 – m – 3 = 0 có hai nghiệm x1; x2 là độ dài các cạnh góc vuông của tam giác ABC tại A biết độ dài cạnh huyền BC = 2
Chiều cao của một tam giác vuông là 8cm chia cạnh huyền thành 2 đoạn thẳng hơn kém nhau 12cm. Tính độ dài cạnh huyền của tam giác vuông đó.
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình . Gọi (d) là đường thẳng đi qua I (0; −2) và có hệ số góc k. Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B trên trục hoành. Khi đó tam giác IHK là tam giác?
1. Hàm số y = ax2
a) Tập xác định
Cho hàm số
Tập xác định của hàm số là R.
b) Tính chất
+ Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0.
+ Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0.
Đồ thị của hàm số là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parabol đỉnh O (với O là gốc tọa độ).
Tính chất của đồ thị:
+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.
+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa x và y.
Bước 3: Vẽ đồ thị và kết luận.
2. Phương trình bậc hai một ẩn
a) Định nghĩa: Phương trình bậc hai một ẩn (nói gọn là phương trình bậc hai) là phương trình có dạng
trong đó x là ẩn, a, b, c là những số cho trước gọi là các hệ số và .
b) Biệt thức
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) ta có biệt thức Δ như sau:
Δ = b2 - 4ac
Ta sửa dụng biết thức Δ để giải phương trình bậc hai.
c) Công thức nghiệm của phương trình bậc hai
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac
+ Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt là
+ Nếu Δ = 0 thì phương trình có nghiệm kép là
+ Nếu Δ < 0 thì phương trình vô nghiệm.
d) Biệt thức
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và b = 2b’ ta có biệt thức như sau:
= b’2 - ac
Ta sửa dụng biết thức để giải phương trình bậc hai.
e) Công thức nghiệm thu gọn của phương trình bậc hai
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) có b = 2b’ và biệt thức = b’2 - ac
+ Nếu > 0 thì phương trình có hai nghiệm phân biệt là
+ Nếu = 0 thì phương trình có nghiệm kép là
+ Nếu < 0 thì phương trình vô nghiệm.
3. Hệ thức Vi – ét
a) Hệ thức Vi – ét
Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì ta có:
b) Ứng dụng của hệ thức Vi - ét
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có một nghiệm là x1 = -1 và nghiệm còn lại là
+ Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình bậc hai x2 - Sx + P = 0
+ Điều kiện để có hai số đó là S2 - 4P ≥ 0