Thứ sáu, 16/05/2025
IMG-LOGO

Câu hỏi:

18/07/2024 254

Cho đa giác có 7 cạnh, số đường chéo của đa giác đó là

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

14

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình thoi có hai đường chéo là 8 cm và 12 cm. Một hình chữ nhật có các đỉnh là trung điểm của các cạnh hình thoi. Diện tích hình chữ nhật là

Xem đáp án » 13/08/2022 1,521

Câu 2:

Cho hình vuông ABCD cạnh 18 cm. Các điểm M,N lần lượt trên các cạnh AB, AD sao cho AM = DN = x.

a) Tính diện tích tam giác AMN theo x.

b) Tìm x để diện tích tam giác AMN bằng 781 diện tích hình vuông ABCD

Xem đáp án » 13/08/2022 845

Câu 3:

Cho tam giác ABC có diện tích bằng 20 cm2BC = 8 cm. Độ dài đường cao ứng với cạnh BC

Xem đáp án » 13/08/2022 807

Câu 4:

Một tứ giác, mỗi đường chéo của nó chia tứ giác thành hai phần có diện tích bằng nhau. Tứ giác đó là hình gì?

Xem đáp án » 13/08/2022 568

Câu 5:

Cho tam giác ABC có ba đường trung tuyến AM,BN,CK cắt nhau tại G. So sánh SBGM và SCGM

Xem đáp án » 13/08/2022 410

Câu 6:

Cho tam giác ABC vuông tại A và điểm H di chuyển trên BC. Gọi E,F lần lượt là điểm đối xứng của H qua AB,AC.

a) Chứng minh A, E, F thẳng hàng.

b) Chứng minh BEFC là hình thang. Tìm vị trí của H để BEFC là hình bình hành?

c) Xác định vị trí của H để tam giác EHF trở thành tam giác vuông cân?

Xem đáp án » 13/08/2022 380

Câu 7:

Diện tích một hình chữ nhật thay đổi như thế nào nếu chiều dài tăng 3 lần, chiều rộng giảm 3 lần

Xem đáp án » 13/08/2022 282

LÝ THUYẾT

1. Khái niệm về đa giác

Định nghĩa: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng mà bờ là đường thẳng chứa bất kì cạnh nào của đa giác đó. 

• Đa giác ABCDE là hình gồm năm đoạn thẳng AB, BC, CD, DE, EA, trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng AB, BC, CD, DE, EA được gọi là các cạnh của đa giác đó.

Khi đó, đa giác ABCDE là đa giác lồi.

Chú ý: Từ nay nếu nhắc đến đa giác thì ta quy ước đó là đa giác lồi.

2. Đa giác đều

Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

3. Khái niệm diện tích đa giác

• Số đo của một phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.

• Mỗi đa giác có một diện tích xác định. Diện tích đa giác là một số dương.

Diện tích đa giác có các tính chất sau:

• Hai tam giác bằng nhau thì có diện tích bằng nhau.

• Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó.

4. Công thức diện tích hình chữ nhật

Diện tích hình chữ nhật là tích hai kích thức của nó: S = a . b

                                   

5. Công thức diện tích hình vuông, diện tích tam giác vuông

Diện tích hình vuông bằng bình phương cạnh của nó: S = a2.

                                                 

Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông: S =12 a.b.

                                       

5. Công thức diện tích tam giác

Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.

S =12 a . h.

                                           

6. Công thức diện tích của hình thang

Diện tích hình thang bằng một nửa tích của tổng hai đáy với chiều cao.

S =  12(a + b) . h

                                               

7. Công thức tính diện tích hình bình hành

Diện tích hình bình hành bằng tích của một cạnh với chiều cao tương ứng với cạnh đó: S = a . h

                                               

8. Diện tích tứ giác có hai đường chéo vuông góc 

Diện tích của một tứ giác có hai đường chéo vuông góc bằng nửa tích độ dài hai đường chéo đó.

9. Công thức tính diện tích hình thoi

Diện tích hình thoi bằng nửa tích hai đường chéo.

S =12 d1 . d2

                                       

10. Cách tính diện tích đa giác

• Với một đa giác bất kì không có công thức tính. Cụ thể, ta có thể thực hiện các cách sau để tính diện tích đa giác:
+ Chia đa giác đó thành các tam giác riêng biệt rồi tính diện tích từng tam giác sau đó cộng các kết quả lại với nhau.
+ Tạo ra một tam giác chứa đa giác đó rồi tính diện tích đa giác bằng cách lấy tam giác lớn trừ đi diện tích của các “phần thừa”.
• Với một số hình đặc biệt ta có thể chia đa giác thành nhiều phần, mỗi phần đều là những hình mà ta dễ tính diện tích như: hình thang vuông, hình thoi, hình chữ nhật, hình vuông,...