Tìm giao điểm của đồ thị hàm số y = 2 và đường thẳng y = - 4x + 6
A. A(1; 2) và B(- 3; 18)
B. A(1; 2) và B(3; -6)
C. A( 3; -6) và B( -1; 10)
D. Đáp án khác
Đáp án A
Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm phương trình:
2 = -4x + 62 + 4x - 6 = 0 (*)
Phương trình này có = - 4.2.(-6) = 16 + 48 = 64
Do đó, phương trình (*) có hai nghiệm phân biệt:
Với x = 1 thì y = -4. 1 + 6 = 2 ta được điểm A(1; 2).
Với x = -3 thì y = -4.(-3) + 6 = 18 ta được điểm B( -3; 18)
Vậy parabol cắt đường thẳng tại hai điểm là A( 1;2) và B(- 3 ; 18)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho phương trình a + bx + c = 0 (a0) có biệt thức = - 4ac > 0. Khi đó phương trình có hai nghiệm phân biệt là:
Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình 6 - 7x = 0
Cho phương trình – 6x + m = 0. Tìm m để phương trình đã cho vô nghiệm?
Cho phương trình 2 + 3x – 4 = 0 . Tìm mệnh đề sai trong các mệnh đề sau?
Cho phương trình a + bx + c = 0 (a 0) có biệt thức = - 4ac. Phương trình đã cho vô nghiệm khi:
Không dùng công thức nghiệm, tìm số nghiệm của phương trình -4 + 9 = 0
Cho phương trình (m + 1) + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm
1. Công thức nghiệm
a) Biệt thức
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) ta có biệt thức Δ như sau:
Δ = b2 - 4ac
Ta sửa dụng biết thức Δ để giải phương trình bậc hai.
b) Công thức nghiệm của phương trình bậc hai
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac
+ Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt là
+ Nếu Δ = 0 thì phương trình có nghiệm kép là
+ Nếu Δ < 0 thì phương trình vô nghiệm.
Chú ý: Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a và c trái dấu, tức là ac < 0. Khi đó ta có Δ = b2 - 4ac > 0 ⇒ Phương trình luôn có hai nghiệm phân biệt.