Cho phương trình a + bx + c = 0 (a 0) có biệt thức b = 2b'; ' = - ac. Phương trình đã cho có hai nghiệm phân biệt khi:
A. ' > 0
B. ' = 0
C. '0
D. '0
Đáp án A
Xét phương trình bậc hai a + bx + c = 0 (a ≠ 0) có biệt thức b = 2b'; Δ' = - ac:
• TH1: Nếu Δ' < 0 thì phương trình vô nghiệm
• TH2: Nếu Δ' = 0 thì phương trình có nghiệm kép = =
• TH3: Nếu Δ' > 0 thì phương trình có hai nghiệm phân biệt =
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho phương trình 2 – 4x + m = 0. Tìm m để phương trình trên vô nghiệm?
Cho phương trình a + bx + c = 0 (a 0) có biệt thức b = 2b'; ' = - ac. Nếu ' = 0 thì:
Cho phương trình 2 - 10x + m + 1 = 0; ( m là tham số). Tìm m để biệt thức ' = 11
Cho hai phương trình – 4x + 4= 0 và + (m + 1)x + m = 0 . Tìm m để hai phương trình trên có nghiệm chung?
1. Công thức nghiệm thu gọn
a) Biệt thức
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và b = 2b’ ta có biệt thức như sau:
= b’2 - ac
Ta sửa dụng biết thức để giải phương trình bậc hai.
b) Công thức nghiệm thu gọn của phương trình bậc hai
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) có b = 2b’ và biệt thức = b’2 - ac
+ Nếu > 0 thì phương trình có hai nghiệm phân biệt là
+ Nếu = 0 thì phương trình có nghiệm kép là
+ Nếu < 0 thì phương trình vô nghiệm.