IMG-LOGO

Câu hỏi:

22/07/2024 2,160

Gọi x1; x2 là nghiệm của phương trình x2 - 5x + 2 = 0. Không giải phương trình, tính giá trị của biểu thức A = x12 + x22

A. 20

B. 21

Đáp án chính xác

C. 22

D. 23

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Vì =-52-4.1.2=17> 0

Nên phương trình x2-5x+2=0 có hai nghiệm x1; x2

Theo hệ thức Vi-ét ta có:

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết có hai số u và v thỏa mãn điều kiện: u + v = 12 và u.v = 27. Biết u < v. Tính u2.v?

Xem đáp án » 14/08/2022 1,200

Câu 2:

Biết có hai số u và v thỏa mãn u – v = 10 và u.v = 11. Tính |u+ v| ?

Xem đáp án » 14/08/2022 557

Câu 3:

Cho phương trình x2 - 4x + (2m - 2) = 0.Tìm m để phương trình trên có 2 nghiệm dương phân biệt ?

Xem đáp án » 14/08/2022 447

Câu 4:

Cho hai số có tổng là S và tích là P với S2 4P. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây:

Xem đáp án » 14/08/2022 427

Câu 5:

Chọn phát biểu đúng. Phương trình ax2 + bx + c (a0) có hai nghiệm x1; x2. Khi đó:

Xem đáp án » 14/08/2022 380

Câu 6:

Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình x2 - 6x + 7 = 0

Xem đáp án » 14/08/2022 313

Câu 7:

Chọn phát biểu đúng: Phương trình ax2 + bx + c (a khác 0) có a - b + c = 0 . Khi đó:

Xem đáp án » 14/08/2022 298

Câu 8:

Cho phương trình x2 - (m + 1)x + m = 0. Có bao nhiêu giá trị nguyên của m để phương trình đã cho có 2 nghiệm âm?

Xem đáp án » 14/08/2022 212

Câu 9:

Cho phương trình x2 - 4x + m + 1= 0 . Tìm m để phương trình trên có nghiệm và x1. x2 = 4. Tìm m ?

Xem đáp án » 14/08/2022 203

LÝ THUYẾT

1. Hệ thức Vi – ét

Phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có nghiệm dù đó là hai nghiệm phân biệt hay nghiệm kép thì ta đều có thể viết được dưới dạng:

x1=b+Δ2a;x2=bΔ2a

Định lí Vi – ét

Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì ta có:

x1+x2=bax1.x2=ca 

Nhận xét: Nhờ định lý Vi – ét, nếu đã biết một nghiệm của phương trình bậc hai thì có thế suy ra nghiệm kia.

2. Ứng dụng của định lý Vi – ét.

a) Ứng dụng trong giải phương trình (bằng cách nhẩm miệng)

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2=ca

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có một nghiệm là x1 = -1 và nghiệm còn lại là x2=-ca

b) Tìm hai số khi biết tổng và tích.

+ Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình bậc hai x2 - Sx + P = 0

+ Điều kiện để có hai số đó là S2 - 4P ≥ 0

 

Câu hỏi mới nhất

Xem thêm »
Xem thêm »