Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 2,124

Cho ABC cân tại A, kẻ đường cao AH và CK. Biết AH = 7,5cm; CK = 12cm. Tính BC, AB

A. AB = 10,5cm; BC = 18cm

B. AB = 12cm; BC = 22cm

C. AB = 12,5cm; BC = 20cm

Đáp án chính xác

D. AB = 15cm; BC = 24cm

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Ta có ∆ABC cân tại A => AH là đường cao đồng thời là đường trung tuyến (định lý)

=> H là trung điểm của BC

Đặt  BH = x (x > 0, cm) BC=2.BH=2x 

Ta có: SABC=12AH.BC=12CK.AB AH.BC = CK.AB 7,5.2x = 12.AB

AB = 54x

Áp dụng định lý Pitago cho ABH vuông tại H ta có:

AB2=BH2+AH22516x2=x2+7,52

916x2=7,52x2=100x=10

=> AB = 54.10 = 12,5 cm

=> BC = 2BH = 20cm

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Biết ABAC=37, đường cao AH = 42cm. Tính BH, HC

Xem đáp án » 14/08/2022 5,535

Câu 2:

Tính diện tích hình thang ABCD có đường cao bằng 12cm, hai đường chéo AC và BD vuông góc với nhau, BD = 15cm.

Xem đáp án » 14/08/2022 5,434

Câu 3:

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 10cm, AH = 6cm. Tính độ dài các cạnh AC, BC của tam giác ABC.

Xem đáp án » 14/08/2022 3,111

Câu 4:

“Trong tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng…”. Cụm từ thích hợp điền vào chỗ trống là:

Xem đáp án » 14/08/2022 2,642

Câu 5:

Cho ABC vuông tại A có AB = 3cm, AC = 4cm, đường cao AH và đường trung tuyến AM. Độ dài đoạn thẳng HM là:

Xem đáp án » 14/08/2022 2,073

Câu 6:

Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB : AC = 3 : 4 và AH = 6cm. Tính độ dài các đoạn thẳng CH

Xem đáp án » 14/08/2022 2,027

Câu 7:

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 5 : 12 và AB + AC = 34. Tính các cạnh của tam giác ABC

Xem đáp án » 14/08/2022 1,706

Câu 8:

Tìm x, y trong hình vẽ sau:

Xem đáp án » 14/08/2022 1,638

Câu 9:

Cho tam giác ABC vuông tại A có cạnh AB = 30cm và AC = 40cm, đường cao AH, trung tuyến AM. Tính BH, HM, MC

Xem đáp án » 14/08/2022 1,400

Câu 10:

Tìm x, y trong hình vẽ sau:

Xem đáp án » 14/08/2022 1,348

Câu 11:

Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN

Xem đáp án » 14/08/2022 1,262

Câu 12:

Cho ABCD là hình thang vuông tại A và D. Đường chép BD vuông góc với BC. Biết AD = 10cm, DC = 20cm. Tính độ dài BC.

Xem đáp án » 14/08/2022 1,211

Câu 13:

Cho ABC vuông tại A, các cạnh AB, AC tương ứng tỉ lệ với 3 và 4. Biết đường cao AH = 18.

 

 

Tính chu vi ABC

Xem đáp án » 14/08/2022 1,167

Câu 14:

Cho tam giác ABC vuông tại A, đường cao AH (như hình vẽ). Hệ thức nào sau đây là sai?

Xem đáp án » 14/08/2022 1,143

Câu 15:

Cho ABCD là hình tháng vuông A và D. Đường chéo BD vuông góc với BC. Biết AD = 12cm, DC = 25cm. Tính độ dài BC, biết BC < 20

Xem đáp án » 14/08/2022 1,133

LÝ THUYẾT

1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền

Định lí 1. Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền.

Ví dụ 1. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông (ảnh 1)

Ta có: AB2 = BC . BH; AC2 = BC . HC.

2. Một số hệ thức liên quan tới đường cao

Định lí 2. Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền.

Ví dụ 2. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông (ảnh 1)

Ta có: AH2 = BH . HC.

Định lí 3. Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng.

Ví dụ 3. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông (ảnh 1)

Ta có: AB . AC = BC . AH.

Định lí 4. Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.

Ví dụ 4. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông (ảnh 1)

Ta có: 1AH2=1AB2+1AC2

Câu hỏi mới nhất

Xem thêm »
Xem thêm »