Cho tam giác ABC vuông tại A, đường cao AH có CH = 11cm, BH = 12cm. Tính tỉ số lượng giác cos C (làm tròn đến chữ số thập phân thứ 2)
A. cos C0,79
B. cos C0,69
C. cos C0,96
D. cos C0,66
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác vuông ABC vuông tại C có AC = 1cm, BC = 2cm. Tinh các tỉ số lượng giác sin B, cos B
Cho tam giác ABC vuông tại A, , cạnh AB = 5cm. Độ dài cạnh AC là:
Cho tam giác ABC vuông tại A, đường cao AH có AB = 13cm, BH = 0,5dm. Tính tỉ số lượng giác sinC (làm tròn đến chữ số thập phân thứ 2)
Cho tam giác ABC vuông tại A, đường cao AH có AC = 15cm, CH = 6cm. Tính tỉ số lượng giác cos B.
Cho tam giác ABC vuông tại C có BC = 1,2cm, AC = 0,9cm. Tính các tỉ số lượng giác sinB và cosB
Cho tam giác ABC vuông tại A có BC = 9cm; AC = 5cm. Tính tỉ số lượng giác tan C (làm tròn đến chữ số thập phân thứ 1)
Cho tam giác ABC vuông tại A có BC = 8cm, AC = 6cm. Tính tỉ số lượng giác tanC. (làm tròn đến chữ số thập phân thứ 2)
Cho tam giác ABC vuông tại A có AB = 5cm, cot C = . Tính độ dài các đoạn thẳng AC và BC (làm tròn đến chữ số thập phân thứ 2)
1. Khái niệm tỉ số lượng giác của một góc nhọn
+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu là sin α.
+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu là cos α.
+ Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu là tan α.
+ Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu là cot α.
Ví dụ 1. Cho tam giác ABC có .
Khi đó: ; ; ;
Nhận xét: Nếu α là một góc nhọn thì:
0 < sin α < 1; 0 < cos α < 1; tan α > 0; cot α > 0.
Ví dụ 2. Cho tam giác ABC có
Khi đó: ; ; ;
Chú ý: Nếu hai góc nhọn α và β có sin α = sin β (hoặc cos α = cos β, hoặc tan α = tan β, hoặc cot α = cot β) thì α = β vì chúng là hai góc tương ứng của hai tam giác vuông đồng dạng.
Ví dụ 3. Cho tam giác ABC có AB = AC, đường cao AH. MN là đường trung bình của tam giác ABH. Chứng minh .
Lời giải:
Vì AH là đường cao của ∆ABC nên hay (1)
Mà MN là đường trung bình của ∆AMN nên:
+ AB = 2AM; AH = 2AN.
+ MN // BH (2)
Từ (1) và (2) suy ra (tính chất từ vuông góc đến song song).
Xét ∆AMN vuông tại N (vì ) nên: .
Xét ∆ACH vuông tại H nên: .
Ta thấy: .
Do đó (đpcm).
2. Tỉ số lượng giác của hai góc phụ nhau
Định lí. Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Ví dụ 4. Cho tam giác ABC vuông tại A có .
Khi đó, α + β = 90° (trong tam giác vuông hai góc nhọn phụ nhau).
Ta có: sin α = cos β; cos α = sin β; tan α = cot β; cot α = tan β.
Bảng lượng giác của một số góc đặc biệt:
Ví dụ 5. Cho tam giác ABC vuông tại A có BC = 16, . Tính độ dài AB.
Lời giải:
Xét ∆ABC vuông tại A, ta có: .
Hay .
Suy ra .
Vậy AB = 8 (đvđd).
Chú ý: Từ nay khi viết các tỉ số lượng giác của một góc nhọn trong tam giác, ta bỏ kí hiệu " ^ " đi.
Ví dụ 6. Góc A là góc nhọn thì ta viết sin A thay cho .