Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.
+ Do ABCD là hình bình hành nên AB//CD
(hai góc trong cùng phía) (1)
+ ABCP là tứ giác nội tiếp
Từ (1) và (2) suy ra:
+ Tứ giác ABCP có: AB//CP (vì AB//CD)
=> Tứ giác ABCP là hình thang.
Lại có: nên ABCP là hình thang cân.
=> AP=BC (3)
Mà ABCD là hình bình hành => AD = BC (4)
Từ (3) và (4) suy ra AP=AD (đpcm).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong các hình sau, hình nào nội tiếp được trong một đường tròn:
Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân? Vì sao?
Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = DC và . Xác định tâm của đường tròn đi qua bốn điểm A, B, D, C
Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = DC và . Chứng minh tứ giác ABDC là tứ giác nội tiếp.
Xem hình 48. Chứng minh QR // ST.
Hướng dẫn: Xét cặp góc so le trong