Cho hai tiếp tuyến tại C và D của đường tròn (O) cắt nhau tại N, biết = 60o. Tính và
A. = 45o; = 45o.
B. = 60o; = 30o.
C. = 35o; = 60o.
D. = 30o; = 60o.
Vì NC, ND là hai tiếp tuyến của đường tròn nên ON là tia phân giác của ; NO là tia phân giác của hay = = 30o
Mà tam giác ODN vuông tại D (do ND là tiếp tuyến) nên
= 90o − = 90o – 30o = 60o
Mà ON là tia phân giác của nên = 60o
Vậy = 30o; = 60o.
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho (O; R) và dây cung MN = R. Kẻ OI vuông góc với MN tại I. Tính số đo cung nhỏ MN
Cho (O; R) và dây cung MN = R. Kẻ OI vuông góc với MN tại I. Tính độ dài OI theo R
Cho đường tròn (O; R), lấy điểm M nằm ngoài (O) sao cho OM = R. Từ M kẻ tiếp tuyến MA và MB với (O) (A, B là các tiếp điểm). Số đo cung AB lớn là:
Cho (O; R) và dây cung MN = R. Kẻ OI vuông góc với MN tại I. Tính số đo cung nhỏ MN.
Cho đường tròn (O; R). Gọi H là trung điểm của bán kính OA, dây CD vuông góc với OA tại H. Tính số đo cung lớn CD
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB, AC lần lượt tại I, K. Tính biết = 36o
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB, AC lần lượt tại I, K. So sánh các cung nhỏ CI và cung nhỏ BK
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB, AC lần lượt tại I, K. So sánh các cung nhỏ BI và cung nhỏ CK
Cho đường tròn (O; R). Gọi H là điểm thuộc bán kính OA sao cho OH = OA. Dây CD vuông góc với OA tại H. Tính số đo cung lớn CD
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB, AC lần lượt tại I, K. Tính biết = 40o