Thứ sáu, 24/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 130

Cho phương trình 2x2 – mx – 5 = 0 (m là tham số) (1)

a) Chứng tỏ phương trình (1) luôn có 2 nghiệm với mọi m.

b) Gọi x1, x2 là 2 nghiệm của phương trình (1). Tính biểu thức A = x12 – x1 + x22 – x2 theo m.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

a) Ta có: ∆ = m2 – 4.2.(–5) = m2 + 40

Vì ∆ = m2 + 40 > 0 (đúng với mọi giá trị của m).

Nên phương trình (1) luôn có 2 nghiệm với mọi m (điều phải chứng minh).

b) A = x12 – x1 + x22 – x2

= (x12 + x22) – (x1 + x2)

= (x1 + x2)2 – 2x1.x2 – (x1 + x2)          (2)

Theo hệ thức Vi-et, ta có: [x1+x2=ba=m2x1.x2=ca=52

Thay vào (2) ta được:

A = (m2)22.(52)m2=m24m2+5.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hoa văn của một tấm bìa hình vuông ABCD cạnh 25cm là hai cung tròn tâm B và tâm D bán kính 25cm có phần chung (phần tô đậm) là hình quả trám như hình vẽ. Hãy tính diện tích phần chung này. (Lấy π ≈ 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất).

Hoa văn của một tấm bìa hình vuông ABCD cạnh 25cm là hai cung tròn tâm B và tâm D bán kính 25cm có phần chung (phần tô đậm) là hình quả trám như hình vẽ. Hãy tính diện tích phần chung này. (Lấy π ≈ 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất). (ảnh 1)

Xem đáp án » 16/08/2022 499

Câu 2:

 Một trường tổ chức cho 330 người bao gồm giáo viên và học sinh đi tham quan Dinh Độc Lập. Biết giá vé tham quan tòa nhà chính Di tích lịch sử Dinh Độc Lập của mổi giáo viên là 40 000 đồng, của mỗi học sinh là 20 000 đồng. Nhân dịp kỉ niệm 90 năm Ngày thành lập Đoàn TNCS Hồ Chí Minh (26/3/1931-26/3/2021) nên được giảm 10% cho mỗi vé tham quan, vì vậy mà nhà trường chỉ phải trả số tiền là 6 480 000 đồng. Hỏi có bao nhiêu giáo viên, bao nhiêu học sinh?

Xem đáp án » 16/08/2022 386

Câu 3:

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ hai tiếp tuyến AB, AC đến (O) (B, C là 2 tiếp điểm). Gọi H là giao điểm của OA và BC, qua H kẻ một đường thẳng vuông góc với OC cắt (O) tại M (M thuộc cung nhỏ BC), AM cắt (O) tại N (N khác M); gọi K là trung điểm MN.

a) Chứng minh tứ giác ABOC nội tiếp và AB.BM = AM.NB.

b) Chứng minh 5 điểm A, B, K, O, C cùng thuộc 1 đường tròn và AMH^=AON^.

c) Kẻ OI vuông góc NB tại I. Chứng minh: I, K, H thẳng hàng.

Xem đáp án » 16/08/2022 322

Câu 4:

Giải các phương trình sau:

a) 3x2 + 10x + 3 = 0

b) –x4 + 2020x2 + 2021 = 0

c) x3 – 5x2 + 4x = 0

Xem đáp án » 16/08/2022 302

Câu 5:

Cho Parabol (P): y = x2 và đường thẳng (d): y = –x + 2.

a) Vẽ (P) trên mặt phẳng tọa độ Oxy.

b) Tìm tọa độ giao điểm của (P) và (d) bằng phép tính.

Xem đáp án » 16/08/2022 163

Câu hỏi mới nhất

Xem thêm »
Xem thêm »