Với , ta xét các mệnh đề: P :“ + 5 chia hết cho 2”;
Q: “ + 5 chia hết cho 3” và R: “ + 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 3
B. 0
C. 1
D. 2
Bằng quy nạp toán học ta chứng minh được + 5 chia hết cho 6.
Mọi số chia hết cho 6 đều chia hết cho 2 và chia hết cho 3.
Do đó cả 3 mệnh đề đều đúng.
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến đúng với mọi số tự nhiên (p là một số tự nhiên), ta tiến hành hai bước:
Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho a) b)
Chọn mệnh đề đúng trong các mệnh đề sau
Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với . Khẳng định nào sau đây là đúng?
Một học sinh chứng minh mệnh đề chia hết cho như sau:
Khẳng định nào sau đây là đúng?
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n=k thì ta cần chứng minh mệnh đề đúng đến:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với thì ta cần chứng minh mệnh đề đúng với:
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với: