Tính chu vi của một hình tròn có bán kính R = 1,25 m theo công thức
C = 2πR với π = 3,142.
Chu vi của hình tròn đó là:
C = 2πR = 2.3,142.1,25 = 7,855 (m2)
Đáp số: 7,855 m2
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tính diện tích S của một hình tròn có bán kính R = 10cm theo công thức
S = πR2 với π = 3,142
Diện tích một hình chữ nhật có chiều dài 31,21 cm và chiều rộng 22,52 cm là cm2
Khối lượng vitamin C trung bình trong một quả ớt chuông là 0,135 g, còn trong một quả cam là 0,045 g. Khối lượng vitamin C trong quả ớt chuông gấp bao nhiêu lần trong quả cam?
Điền số thích hợp vào ô trống
Khoảng cách từ nhà An đến trường học là 3km, mỗi ngày An đạp xe đến trường với vận tốc 15km/h. Vậy An đi tới trường hết phút
1. Phép nhân số thập phân
a) Nhân hai số thập phân
Muốn nhân hai số thập phân dương, ta làm như sau:
Bước 1: Viết thừa số này ở dưới thừa số kia như đối với phép nhân các số tự nhiên
Bước 2: Thực hiện phép nhân như nhân số tự nhiên
Bước 3: Đếm xem trong phần thập phân ở cả hai thừa số có tất cả bao nhiêu chữ số rồi dùng dấu “,” tách ở tích ra bấy nhiêu chữ số từ phải sang trái, ta nhận được tích cần tìm.
Chú ý: Hai số thập phân cùng dấu thì tích là số dương; hai số thập phân khác dấu thì tích là số âm.
Nhân hai số thập phân cùng dấu: (‒a) . (‒b) = a.b với a, b > 0
Nhân hai số thập phân khác dấu: (‒a) . b = a.(‒b) = ‒ (a.b) với a, b > 0
Ví dụ 1: Tính tích:
a) (‒2,564) . (‒1,45);
b) (‒4,89) . 9,3.
Hướng dẫn giải
a) (‒2,564) . (‒1,45) = 2,564 . 1,45 = 3,7178.
b) (‒4,89) . 9,3 = ‒(4,89 . 9,3) = ‒ 45,477
b) Tính chất của phép nhân số thập phân
Phép nhân số thập phân cũng có các tính chất như phép nhân số nguyên: giao hoán, kết hợp, nhân với số 1, phân phối của phép nhân với phép cộng và phép trừ.
Ví dụ 2. Tính một cách hợp lí:
a) 1,25 . 24;
b) 1,14. 10,6 + 1,14 . (‒0,6).
Hướng dẫn giải:
a) 1,25 . 24 = 5 . 0,25 . 4 . 6 = (0,25.4) . (5.6) = 1 . 30 = 30.
b) 1,14. 10,6 + 1,14 . (‒0,6)
= 1,14 . [10,6 + (‒0,6)]
= 1,14 . 10
= 11,4.
2. Phép chia số thập phân
Muốn chia hai số thập phân dương, ta làm như sau:
Bước 1: Số chia có bao nhiêu chữ số sau dấu “,” thì chuyển dấu “,” ở số bị chia sang bên phải bấy nhiêu chữ số. (Khi chuyển dấu “,” ở số bị chia sang phải mà số bị chia không đủ vị trí, thì ta điền thêm những chữ số 0 vào bên phải của số đó)
Bước 2: Bỏ đi dấu “,” ở số chia, ta nhận được số nguyên dương
Bước 3: Đem số nhận được ở Bước 1 chia cho số nguyên dương nhận được ở Bước 2, ta có thương cần tìm.
Chú ý: Hai số thập phân cùng dấu thì thương là số dương; hai số thập phân khác dấu thì thương là số âm.
Chia hai số thập phân cùng dấu: (‒a) : (‒b) = a : b với a, b > 0
Chia hai số thập phân khác dấu: (‒a) : b = a : (‒b) = ‒ (a : b) với a, b > 0
Ví dụ 3. Tính thương:
a) (‒4,5625) : (‒1,25);
b) (‒23,04) : 0,036.
Hướng dấn giải
a) (‒4,5625) : (‒1,25) = 4,5625 : 1,25 = 456,25 : 125 = 3,65.
b) (‒23,04) : 0,036 = ‒ (23,04 : 0,036) = ‒ (23040 : 36) = ‒ 640.
3. Thứ tự thực hiện phép tính với số thập phân:
a) Thứ tự thực hiện phép tính với số thập phân trong biểu thức không chứa dấu ngoặc:
Đối với biểu thức không chứa dấu ngoặc, ta thực hiện theo thứ tự:
Luỹ thừa → Phép nhân và phép chia → Phép cộng và phép trừ.
b) Thứ tự thực hiện phép tính với số thập phân trong biểu thức có chứa dấu ngoặc:
Đối với biểu thức có chứa dấu ngoặc, ta thực hiện theo thứ tự:
Dấu ngoặc () → Dấu ngoặc [] → Dấu ngoặc {}.
Ví dụ 4. Tính: 1,23 + (‒6,2725) : 0,65 – 1,52
Hướng dấn giải
1,23 + (‒6,2725) : 0,65 – 1,52
= 1,23 + [‒(6,2725 : 0,65)] – 1,5.1,5
= 1,23 – 9,65 – 2,25
= 1,23 + (‒9,65) + (‒2,25)
= ‒ (9,65 – 1,23) + (‒2,25)
= (‒8,42) + (‒2,25)
= ‒ (8,42 + 2,25)
= ‒ 10,67.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1