Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 11}\\{{x^2} + {y^2} + 3\left( {x + y} \right) = 28}\end{array}} \right.\) có nghiệm là :
A.(3;2),(2;3).
B.(−3;−7),(−7;−3).
C.(3;2);(−3;−7).
D.(3;2),(2;3),(−3;−7),(−7;−3).
Đặt \[S = x + y,P = xy\left( {{S^2} - 4P \ge 0} \right)\]
Ta có : \(\left\{ {\begin{array}{*{20}{c}}{S + P = 11}\\{{S^2} - 2P + 3S = 28}\end{array}} \right. \Rightarrow {S^2} - 2\left( {11 - S} \right) + 3S = 28\)
\[ \Rightarrow {S^2} + 5S - 50 = 0 \Rightarrow S = 5;S = - 10\]Khi \[S = 5 \Rightarrow P = 6\] thì x,y là nghiệm của phương trình
\[{X^2} - 5X + 6 = 0 \Leftrightarrow X = 2;X = 3\]Khi \[S = - 10 \Rightarrow P = 21\]thì x,y là nghiệm của phương trình
\[{X^2} + 10X + 21 = 0 \Leftrightarrow X = - 3;X = - 7\]Vậy hệ có nghiệm (3;2),(2;3),(−3;−7),(−7;−3).
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \)biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\frac{4}{5}\) số ban đầu trừ đi 10. Khi đó \({a^2} + {b^2}\) bằng
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y = 9}\\{x.y = 90}\end{array}} \right.\)có nghiệm là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} = 3x - y}\\{{y^2} = 3y - x}\end{array}} \right.\) có bao nhiêu nghiệm?
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?
Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right.\)
Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?
Hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y = 5}\\{{x^2} - {y^2} = 15}\end{array}} \right.\) có nghiệm là
Cho hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + xy - {y^2} = 0}\\{{x^2} - xy - {y^2} + 3x + 7y + 3 = 0}\end{array}} \right.\). Các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 5}\\{{x^2} + {y^2} = 5}\end{array}} \right.\) có nghiệm là :
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^3} - 3x = {y^3} - 3y}\\{{x^6} + {y^6} = 27}\end{array}} \right.\)có bao nhiêu nghiệm ?
Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + y = 11}\\{5x - 4y = 8}\end{array}} \right.\)là
Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 2\left| x \right| = 0}\\{{x^2} = {y^2} - 1}\end{array}} \right.\)ta được nghiệm (x;y). Khi đó \[{x^2} + {y^2}\;\] bằng:
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?