Nghiệm của phương trình \[\sin x.\cos x = 0\] là:
A.\[x = \frac{\pi }{2} + k2\pi \]
B. \[x = \frac{{k\pi }}{2}\]
C. \[x = k2\pi \]
D. \[x = \frac{\pi }{6} + k2\pi \]
Bước 1:
\[\sin x.\cos x = 0 \Leftrightarrow \frac{1}{2}\sin 2x = 0\]
Bước 2:
\[\Leftrightarrow \sin 2x = 0 \Leftrightarrow 2x = k\pi \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Phương trình \[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0\]có nghiệm là:
Tìm tập xác định D của hàm số sau \[y = \frac{{2\sin x - 1}}{{\tan 2x + \sqrt 3 }}\].
Phương trình \[\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\] vô nghiệm khi:
Phương trình \[\tan \left( {\frac{\pi }{2} - x} \right) + 2\tan \left( {2x + \frac{\pi }{2}} \right) = 1\] có nghiệm là:
Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]
Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:
Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là:
Nghiệm của phương trình \[\tan \left( {2x - {{15}^0}} \right) = 1\], với \[ - {90^0} < x < {90^0}\;\]là: