Cho cấp số cộng \[\left( {{u_n}} \right)\]với công sai khác 0. Biết rằng các số \[{u_1}{u_2};{u_2}{u_3};{u_1}{u_3}\;\] theo thứ tự đó lập thành cấp số nhân với công bội \[q \ne 0\]. Khi đó q bằng:
A.1
B.2
C.−1
D.−2
Vì cấp số cộng\[\left( {{u_n}} \right)\] có công sai khác 0 nên các số\[{u_1};{u_2};{u_3};{u_4}\] đôi một khác nhau.
Suy ra \[{u_1}{u_2} \ne 0\] và\[q \ne 1\]
Ta có
\[{u_2}{u_3} = {u_1}{u_2}.q;{u_1}{u_3} = {u_1}{u_2}.{q^2} \Leftrightarrow {u_3} = {u_1}.q = {u_2}.{q^2}\]
\[ \Rightarrow {u_3} = {u_2}.{q^2};{u_1} = {u_2}.q\]
Vì\[{u_1};{u_2};{u_3}\] là cấp số cộng nên\[{u_1} + {u_3} = 2{u_2}\]
Thay\[{u_3} = {u_2}.{q^2};{u_1} = {u_2}.q\] vào ta được:
\[{u_1} + {u_3} = 2{u_2} \Rightarrow {u_2}.q + {u_2}.{q^2} = 2{u_2} \Rightarrow {q^2} + q - 2 = 0 \Rightarrow q = - 2\]
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \[{x^3} - 7{x^2} + 2({m^2} + 6m)x - 8 = 0.\]
Tính tổng \[{S_n} = 1 + 11 + 111 + ... + 11...11\] (có 10 chữ số 1)
Cho cấp số nhân \[\left( {{u_n}} \right)\]có \[{u_1} = - 3\;v\`a \;q = - 2.\]. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Cho cấp số nhân \[\left( {{u_n}} \right)\]có \[{u_1} = - 1;q = \frac{{ - 1}}{{10}}\]. Số \[\frac{1}{{{{10}^{103}}}}\] là số hạng thứ bao nhiêu?
Tìm x để các số \[2;8;x;128\;\]theo thứ tự đó lập thành một cấp số nhân.
Cho cấp số nhân\[\left( {{u_n}} \right)\]biết:\[{u_1} = - 2,{u_2} = 8\;\]. Lựa chọn đáp án đúng.
Cho cấp số nhân \[\left( {{u_n}} \right)\]biết: \[{u_1} = - 2,{u_2} = 8\;\]. Lựa chọn đáp án đúng.
Cho cấp số nhân \[\left( {{u_n}} \right)\]biết: \[{u_1} = 3,{u_5} = 48\;\]. Lựa chọn đáp án đúng.
Tìm số hạng đầu và công bội của cấp số nhân \[({u_n})\;\]có công bội q>0 . Biết \[{u_2} = 4;{u_4} = 9\;\].
Dân số của thành phố A hiện nay là 3 triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là 2%. Dân số của thành phố A sau 3 năm nữa sẽ là:
Số đo bốn góc của một tứ giác lồi lập thành một cấp số nhân, biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất. Tìm góc lớn nhất:
Tính tổng \[{S_n} = 1 + 2a + 3{a^2} + 4{a^3} + ... + \left( {n + 1} \right){a^n}\] (\[a \ne 1\;\]là số cho trước)
Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng 36. Một cấp số cộng có n số hạng, công sai d=4, tổng các số hạng bằng 510. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó n bằng:
Cho hai số x và y biết các số \[x - y;x + y;3x - 3y\] theo thứ tự lập thành cấp số cộng và các số \[x - 2;y + 2;2x + 3y\;\] theo thứ tự đó lập thành cấp số nhân. Tìm x;y