IMG-LOGO

Câu hỏi:

21/07/2024 241

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp(MNP)). Tính \(\frac{{SQ}}{{SD}}\).

A.\[\frac{{SQ}}{{SD}} = \frac{1}{4}.\]

Đáp án chính xác

B. \[\frac{{SQ}}{{SD}} = \frac{1}{3}.\]

C. \[\frac{{SQ}}{{SD}} = \frac{1}{5}.\]

D. \[\frac{{SQ}}{{SD}} = \frac{6}{{25}}.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp(MNP)). Tính  (ảnh 1)

Bước 1:

Trong (ABCD) lấy\[PH\parallel AC(H \in CD)\]

\( \Rightarrow PH||MN\) (Do\[AC||MN \Rightarrow H \in \left( {PMN} \right) \Rightarrow NH \subset \left( {PMN} \right)\]

Trong (SCD) gọi \[Q = NH \cap SD\]

Mà\[NH \subset \left( {PMN} \right) \Rightarrow Q \in \left( {PMN} \right)\]

Khi đó  Q là giao điểm của SD với mp(MNP)

Bước 2:

Mà N là trung điểm của\[SC \Rightarrow \frac{{NC}}{{NS}} = 1\]

Mặt khác áp dụng định lí Ta-lét trong tam giác DPH  ta có\[\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\] (vì P là trung điểm của OB).

Bước 3:

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có:

\[\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\]

Do đó ta có\[\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện SABC. Gọi L,M,N lần lượt là các điểm trên các cạnh SA,SB và AC sao cho LM không song song với AB, LN không song song với SC. Mặt phẳng (LMN) cắt các đường thẳng AB,BC,SC lần lượt tại K,I,J. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 06/09/2022 783

Câu 2:

Cho 3 đường thẳng \[{d_1},\;{d_2},\;{d_3}\] không cùng thuộc một mặt phẳng và cắt nhau từng đôi. Khẳng định nào sau đây đúng?

Xem đáp án » 06/09/2022 250

Câu 3:

Cho tứ diện ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,AD,CD,BC. Mệnh đề nào sau đây là sai ?

Xem đáp án » 06/09/2022 228

Câu 4:

Hai đường thẳng song song thì

Xem đáp án » 06/09/2022 225

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi  N là giao điểm của đường thẳng SD với mặt phẳng (AMB). Mệnh đề nào sau đây đúng?

Xem đáp án » 06/09/2022 219

Câu 6:

Hai đường thẳng được gọi là chéo nhau nếu:

Xem đáp án » 06/09/2022 218

Câu 7:

Hai đường thẳng được gọi là song song nếu:

Xem đáp án » 06/09/2022 203

Câu 8:

Cho hai đường thẳng a,b có một điểm chung duy nhất. Có thể kết luận gì về vị trí tương đối của hai đường thẳng đó?

Xem đáp án » 06/09/2022 160

Câu 9:

Một mặt phẳng không thể được xác định nếu ta chỉ biết:

Xem đáp án » 06/09/2022 160

Câu 10:

Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 06/09/2022 156

Câu 11:

Chọn mệnh đề đúng

Xem đáp án » 06/09/2022 150

Câu 12:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Lấy điểm I trên đoạn SO sao cho \(\frac{{SI}}{{SO}} = \frac{2}{3}\), BIBI cắt SD tại M và DI cắt SB tại N. Khi đó MNBD là hình gì?

Xem đáp án » 06/09/2022 149

Câu 13:

Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB và CD. Mặt phẳng \[(\alpha )\;\]qua MN cắt AD,BC lần lượt tại PP và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 06/09/2022 149

Câu 14:

Cho tứ diện ABCD. Gọi M,N,P,Q lần lượt là trung điểm AC,BC,BD,AD. Tìm điều kiện của tứ diện ABCD để MNPQ là hình thoi?

Xem đáp án » 06/09/2022 148

Câu 15:

Cho tứ diện ABCD. Gọi E,F,G là các điểm lần lượt thuộc các cạnh AB,AC,BD sao cho EF cắt BC tại I, EG cắt AD tại H. Ba đường thẳng nào sau đây đồng quy?

Xem đáp án » 06/09/2022 146

Câu hỏi mới nhất

Xem thêm »
Xem thêm »