Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:
a) 2x2 – 7x + 3 = 0;
b) 6x2 + x + 5 = 0;
c) 6x2 + x – 5 = 0;
d) 3x2 + 5x + 2 = 0;
e) y2 – 8y + 16 = 0;
f) 16z2 + 24z + 9 = 0.
a) Phương trình bậc hai 2x2 – 7x + 3 = 0
Có: a = 2; b = -7; c = 3; Δ = b2 – 4ac = (-7)2 – 4.2.3 = 25 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là 3 và
b) Phương trình bậc hai 6x2 + x + 5 = 0
Có a = 6; b = 1; c = 5; Δ = b2 – 4ac = 12 – 4.5.6 = -119 < 0
Vậy phương trình vô nghiệm.
c) Phương trình bậc hai 6x2 + x – 5 = 0
Có a = 6; b = 1; c = -5; Δ = b2 – 4ac = 12 – 4.6.(-5) = 121 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là -1 và
d) Phương trình bậc hai 3x2 + 5x + 2 = 0
Có a = 3; b = 5; c = 2; Δ = b2 – 4ac = 52 – 4.3.2 = 1 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là -1 và
e) Phương trình bậc hai y2 – 8y + 16 = 0
Có a = 1; b = -8; c = 16; Δ = b2 – 4ac = (-8)2 – 4.1.16 = 0.
Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :
Vậy phương trình có nghiệm kép y = 4.
f) Phương trình bậc hai 16z2 + 24z + 9 = 0
Có a = 16; b = 24; c = 9; Δ = b2 – 4ac = 242 – 4.16.9 = 0
Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:
Vậy phương trình có nghiệm kép
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Áp dụng công thức nghiệm để giải các phương trình:
a) 5x2 – x + 2 = 0;
b) 4x2 – 4x + 1 = 0;
c) -3x2 + x + 5 = 0.
Không giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức Δ và xác định số nghiệm của mỗi phương trình sau:
Hãy điền những biểu thức thích hợp vào các ô trống (…) dưới đây:
a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± …
Do đó, phương trình (1) có hai nghiệm x1 = …, x2 = …
b) Nếu Δ = 0 thì từ phương trình (2) suy ra (x+ b/2a)2 = …
Do đó, phương trình (1) có nghiệm kép x = …