Cho các mệnh đề sau :
(I): Hàm số y = sinx có chu kì là .
(II): Hàm số y = tanx có tập giá trị là R∖
(III): Đồ thị hàm số y = cosx đối xứng qua trục tung.
(IV): Hàm số y = cotx nghịch biến trên (−π; 0)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên ?
A. 2
B. 4
C. 1
(I): Hàm số y = sinx có chu kỳ là 2π nên I sai.
(II): Hàm số y = tanx có tập giá trị là R nên II sai.
Tập hợp bài đưa ra là tập xác định của hàm số.
(III): Ta có hàm số y = cosx có
y(−x) = cos(−x) = cosx = y(x)
=> y(x) = y(−x) nên đồ thị hàm số đối xứng với nhau qua trục tung nên III đúng.
(IV): Hàm số y = cotx luôn nghịch biến trên (kπ; π + kπ)
Với k = −1 thì hàm số nghịch biến trên (−π; 0) nên IV đúng.
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = 3sinx + 4cosx − 1
y = 2sin2 x + cos2 2x:
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = cos2x + cosx. Khi đó M + m bằng bao nhiêu?
Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số trên.
Hàm số nào trong các hàm số sau có đồ thị nhận OyOy làm trục đối xứng ?