IMG-LOGO

Câu hỏi:

21/07/2024 180

Cho tứ diện ABCD có trọng tâm G. Chọn khẳng định đúng?

A.\[A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 3\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)\]

B. \[A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 4\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)\]

Đáp án chính xác

C. \[A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 6\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)\]

D. \[A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 2\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[\begin{array}{*{20}{l}}{A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2}}\\{ = {{\left( {\overrightarrow {AG} + \overrightarrow {GB} } \right)}^2} + {{\left( {\overrightarrow {AG} + \overrightarrow {GC} } \right)}^2} + {{\left( {\overrightarrow {AG} + \overrightarrow {GD} } \right)}^2} + {{\left( {\overrightarrow {BG} + \overrightarrow {GC} } \right)}^2} + {{\left( {\overrightarrow {BG} + \overrightarrow {GD} } \right)}^2} + {{\left( {\overrightarrow {CG} + \overrightarrow {GD} } \right)}^2}}\end{array}\]\[\begin{array}{l} = 3A{G^2} + 3B{G^2} + 3C{G^2} + 3D{G^2} + 2\overrightarrow {AG} .\overrightarrow {GB} \\ + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} \left( 1 \right)\end{array}\]

Lại có:

\[\begin{array}{*{20}{l}}{\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} = \vec 0 \Leftrightarrow {{\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} } \right)}^2} = 0}\\\begin{array}{l} \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + G{{\rm{D}}^2} = 2\overrightarrow {AG} .\overrightarrow {GB} \\ + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} \left( 2 \right)\end{array}\end{array}\]

Từ (1) và (2) suy ra

\[A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 4\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có SA=SB và CA=CB. Tính số đo của góc giữa hai đường thẳng chéo nhau SC và AB.

Xem đáp án » 07/09/2022 730

Câu 2:

Trong không gian cho ba đường thẳng phân biệt a,b,c. Khẳng định nào sau đây đúng? 

Xem đáp án » 07/09/2022 279

Câu 3:

Cho \[\left| {\vec a} \right| = 3,\left| {\vec b} \right| = 5\], góc giữa \(\overrightarrow a \)và \(\overrightarrow b \)bằng\({120^0}\). Chọn khẳng định sai trong các khẳng định sau?

Xem đáp án » 07/09/2022 249

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm H của cạnh AB. Biết tam giác SAB là tam giác đều. Số đo của góc giữa SA và CD là

Xem đáp án » 07/09/2022 247

Câu 5:

Trong các mệnh đề sau đây, mệnh đề nào là đúng?

Xem đáp án » 07/09/2022 225

Câu 6:

Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD  bằng:

Xem đáp án » 07/09/2022 205

Câu 7:

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN,SC) bằng:

Xem đáp án » 07/09/2022 198

Câu 8:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 07/09/2022 191

Câu 9:

Cho tứ diện ABCD có AB vuông góc với CD, AB=CD=6. M là điểm thuộc cạnh BC sao cho \[MC = x.BC(0 < x < 1)\] Mặt phẳng(P) song song với AB và CD lần lượt cắt BC,DB,AD,AC tại M,N,P,Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?

Xem đáp án » 07/09/2022 191

Câu 10:

Cho tứ diện ABCD có \[AB = AC = AD\;\] và \[\widehat {BAC} = \widehat {BAD} = {60^0}\] Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \)và \(\overrightarrow {CD} \)?

Xem đáp án » 07/09/2022 190

Câu 11:

Cho tứ diện ABCD có \(AC = \frac{3}{2}AD;\widehat {CAB} = \widehat {DAB} = {60^0};CD = AD\). Gọi \[\varphi \] là góc giữa AB và CD. Chọn khẳng định đúng?

Xem đáp án » 07/09/2022 174

Câu 12:

Trong không gian cho hai hình vuông ABCD và ABC′D′ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O′. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \)và \[\overrightarrow {{\rm{OO}}'} ?\]

Xem đáp án » 07/09/2022 172

Câu 13:

Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \[\overrightarrow {AF} \]và \(\overrightarrow {EG} \)?

Xem đáp án » 07/09/2022 169

Câu 14:

Cho tứ diện ABCD có AB=AC=AD và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {{\rm{IJ}}} \)và \(\overrightarrow {CD} ?\)

Xem đáp án » 07/09/2022 168

Câu 15:

Cho hình hộp ABCD.A′B′C′D′. Giả sử tam giác AB′C và A′DC′ đều có 3 góc nhọn. Góc giữa hai đường thẳng AC và A′D là góc nào sau đây?

Xem đáp án » 07/09/2022 167

Câu hỏi mới nhất

Xem thêm »
Xem thêm »