IMG-LOGO

Câu hỏi:

22/07/2024 246

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng \(\sqrt 6 \) (minh họa như hình vẽ). Gọi M là trung điểm của cạnh A′C′. Khoảng cách từ B′ đến mặt phẳng (ABM) bằng bao nhiêu?

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng (ảnh 1)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng (ảnh 2)

Bước 1: Gọi N là trung điểm của AC, chứng minh\[d\left( {A;\left( {BB'M} \right)} \right) = d\left( {A;\left( {BB'MN} \right)} \right) = AN\]

Gọi N là trung điểm của AC ta có\[\left( {BB'M} \right) \equiv \left( {BB'MN} \right)\] nên\[d\left( {A;\left( {BB'M} \right)} \right) = d\left( {A;\left( {BB'MN} \right)} \right)\]

Vì tam giác ABC đều nên\[AN \bot BN\] Ta có\(\left\{ {\begin{array}{*{20}{c}}{AN \bot BN}\\{AN \bot MN}\end{array}} \right. \Rightarrow AN \bot (BB\prime MN)\) nên\[d\left( {A;\left( {BB'MN} \right)} \right) = AN = 4\]

Bước 2:  Tính\[{V_{A.BB'M}} = \frac{1}{3}d\left( {A;\left( {BB'MN} \right)} \right).{S_{{\rm{\Delta }}BB'M}} = {V_{B'.ABM}}\]

Ta lại có\[BN = \frac{{AB\sqrt 3 }}{2} = 4\sqrt 3 ,\,\,MN = AA' = \sqrt 6 \] nên

\[{S_{BB'MN}} = MN.BN = \sqrt 6 .4\sqrt 3 = 12\sqrt 2 \Rightarrow {S_{{\rm{\Delta }}BB'M}} = 6\sqrt 2 \]

\[ \Rightarrow {V_{A.BB'M}} = \frac{1}{3}d\left( {A;\left( {BB'MN} \right)} \right).{S_{{\rm{\Delta }}BB'M}} = \frac{1}{3}.4.12\sqrt 2 = 16\sqrt 2 = {V_{B'.ABM}}\]

Bước 3:  Sử dụng\[d\left( {B';\left( {ABM} \right)} \right) = \frac{{3{V_{B'.ABM}}}}{{{S_{{\rm{\Delta }}ABM}}}}\]

Lại có\[{V_{B'.ABM}} = \frac{1}{3}d\left( {B';\left( {ABM} \right)} \right).{S_{{\rm{\Delta }}ABM}}\] nên\[d\left( {B';\left( {ABM} \right)} \right) = \frac{{3{V_{B'.ABM}}}}{{{S_{{\rm{\Delta }}ABM}}}}\]

Ta có:

\[\begin{array}{*{20}{l}}{AM = \sqrt {A'{A^2} + A'{M^2}} }\\{ = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {4^2}} = \sqrt {22} }\\{AB = 8}\\{BM = \sqrt {B{B^{\prime 2}} + B'{M^2}} }\\{ = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 3\sqrt 6 }\end{array}\]

Bước 4: Sử dụng công thức\[{S_{{\rm{\Delta }}ABM}} = \sqrt {p\left( {p - AM} \right)\left( {p - AB} \right)\left( {p - BM} \right)} \] với p là nửa chu vi tam giác ABM.

Gọi p là nửa chu vi tam giác ABM ta có\[p = \frac{{\sqrt {22} + 8 + 3\sqrt 6 }}{2}\]

\[ \Rightarrow {S_{{\rm{\Delta }}ABM}} = \sqrt {p\left( {p - AM} \right)\left( {p - AB} \right)\left( {p - BM} \right)} = 12\sqrt 2 \]

Vậy\[d\left( {B';\left( {ABM} \right)} \right) = \frac{{3{V_{B'.ABM}}}}{{{S_{{\rm{\Delta }}ABM}}}} = \frac{{3.16\sqrt 2 }}{{12\sqrt 2 }} = 4\]

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD,A′B′C′D′ có cạnh bằng 3a. Khoảng cách từ A′ đến mặt phẳng (ABCD) bằng

Xem đáp án » 07/09/2022 637

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

Xem đáp án » 07/09/2022 259

Câu 3:

Cho tứ diện OABC có ba cạnh OA,OB,OC đôi một vuông góc với nhau. Biết khoảng cách từ điểm O đến các đường thẳng BC,CA,AB lần lượt là \(a,a\sqrt 2 ,a\sqrt 3 \). Khoảng cách từ điểm O đến mặt phẳng (ABC) là \(\frac{{2a\sqrt m }}{{11}}\). Tìm m.

Xem đáp án » 07/09/2022 257

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 07/09/2022 250

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) góc 300. Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 07/09/2022 218

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm SD, hãy tính theo aa khoảng cách dd từ M đến mặt phẳng (SAC).

Xem đáp án » 07/09/2022 193

Câu 7:

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \(\frac{{a\sqrt {21} }}{6}\). Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC) .

Xem đáp án » 07/09/2022 190

Câu 8:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng \({60^ \circ }\). Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).

Xem đáp án » 07/09/2022 185

Câu 9:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên \(SA = \frac{{a\sqrt {15} }}{2}\) và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC).

Xem đáp án » 07/09/2022 184

Câu 10:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a\sqrt 2 \). Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách dd từ D đến mặt phẳng (SBC).

Xem đáp án » 07/09/2022 177

Câu 11:

Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với đáy, SA=AB=a và AD=x.a. Gọi E là trung điểm của SC. Tìm x, biết khoảng cách từ điểm E đến mặt phẳng (SBD) bằng \(h = \frac{a}{3}\).

Xem đáp án » 07/09/2022 162

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc \({60^ \circ }\)Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 07/09/2022 161

Câu 13:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh aa. Cạnh bên \(SA = a\sqrt 3 \) và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).

Xem đáp án » 07/09/2022 158

Câu 14:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

Xem đáp án » 07/09/2022 157

Câu 15:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \[AD = 2BC,\;AB = BC = a\sqrt 3 \]. Đường thẳng SA vuông góc với mặt phẳng (ABCD). Gọi E là trung điểm của cạnh SC. Tính khoảng cách d từ điểm E đến mặt phẳng (SAD).

Xem đáp án » 07/09/2022 150

Câu hỏi mới nhất

Xem thêm »
Xem thêm »