IMG-LOGO

Câu hỏi:

21/07/2024 119

Phương trình  \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng

A.7

Đáp án chính xác

B.3

C.5

D.6

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2} \Leftrightarrow x{.2^{x - 1}} - {4.2^{x - 1}} + 4x - {x^2} = 0\]

\[ \Leftrightarrow (x - 4)({2^{x - 1}} - x) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 4}\\{{2^{x - 1}} - x = 0( * )}\end{array}} \right.\)

Xét hàm số \[f\left( x \right) = {2^{x - 1}} - x\] trên\(\mathbb{R}\). Ta có

\[f'\left( x \right) = {2^{x - 1}}\ln 2 - 1 = 0 \Leftrightarrow x = {x_0} = 1 + {\log _2}\left( {\frac{1}{{\ln 2}}} \right)\]

\[f'\left( x \right) < 0 \Leftrightarrow x < {x_0};f'\left( x \right) > 0 \Leftrightarrow x > {x_0}\]</>

nên phương trình\[f(x) = 0\]có tối đa 1 nghiệm trong các khoảng\[\left( { - \infty ;{x_0}} \right)\]và\[\left( {{x_0}; + \infty } \right)\]

Mà \[f\left( 1 \right) = f\left( 2 \right) = 0\]nên phương trình (*) có 2 nghiệm x=1 và x=2

Tổng các nghiệm của phương trình đã cho là 7.

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 07/09/2022 216

Câu 2:

Biết rằng phương trình \[{2^{{x^2} - 1}} = {3^{x + 1}}\]có hai nghiệm là a và b.  Khi đó a+b+ab có giá trị bằng

Xem đáp án » 07/09/2022 209

Câu 3:

Tính tổng T tất cả các nghiệm của phương trình\[{4.9^x} - {13.6^x} + {9.4^x} = 0\] 

Xem đáp án » 07/09/2022 208

Câu 4:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 07/09/2022 197

Câu 5:

Tìm nghiệm của phương trình \[\frac{{{3^{2x - 6}}}}{{27}} = {\left( {\frac{1}{3}} \right)^x}.\]

Xem đáp án » 07/09/2022 197

Câu 6:

Tìm nghiệm của phương trình \[\frac{{{3^{2x - 6}}}}{{27}} = {\left( {\frac{1}{3}} \right)^x}.\]

Xem đáp án » 07/09/2022 190

Câu 7:

Tìm giá trị m để phương trình \[{2^{|x - 1| + 1}} + {2^{|x - 1|}} + m = 0\] có nghiệm duy nhất

Xem đáp án » 07/09/2022 189

Câu 8:

Giải phương trình \[{4^x} = {8^{x - 1}}\]

Xem đáp án » 07/09/2022 178

Câu 9:

Cho \[{4^x} + {4^{ - x}} = 7\]. Khi đó biểu thức \[P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \frac{a}{b}\] với \[\frac{a}{b}\] tối giản và \[a,b \in \mathbb{Z}\]. Tích a.b có giá trị bằng

Xem đáp án » 07/09/2022 177

Câu 10:

Cho \[{4^x} + {4^{ - x}} = 7\]. Khi đó biểu thức \[P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \frac{a}{b}\] với \[\frac{a}{b}\] tối giản và \[a,b \in \mathbb{Z}\]. Tích a.b có giá trị bằng

Xem đáp án » 07/09/2022 173

Câu 11:

Tìm giá trị của a để phương trình \[{(2 + \sqrt 3 )^x} + (1 - a){(2 - \sqrt 3 )^x} - 4 = 0\;\]có 2 nghiệm phân biệt thỏa mãn:\[{x_1} - {x_2} = lo{g_{2 + \sqrt 3 }}3\], ta có a thuộc khoảng:

Xem đáp án » 07/09/2022 172

Câu 12:

Giải phương trình \[{4^x} = {8^{x - 1}}\]

Xem đáp án » 07/09/2022 169

Câu 13:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 07/09/2022 167

Câu 14:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 07/09/2022 166

Câu 15:

Tìm nghiệm của phương trình \[{9^{\sqrt {x - 1} }} = {e^{\ln 81}}\]

Xem đáp án » 07/09/2022 164

Câu hỏi mới nhất

Xem thêm »
Xem thêm »