Cho hàm số f(x) có \[f\left( {\frac{\pi }{2}} \right) = 2\] và \[f\prime (x) = xsinx\]. Giả sử rằng \[\mathop \smallint \limits_0^{\frac{\pi }{2}} \cos x.f\left( x \right)dx = \frac{a}{b} - \frac{{{\pi ^2}}}{c}\] (với a,b,c là các số nguyên dương, \(\frac{a}{b}\) tối giản). Khi đó a+b+c bằng:
A.23
B.5
C.20
D.27
Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = cosxdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (x)dx = xsinxdx}\\{v = sinx}\end{array}} \right.\)
Khi đó ta có:
\(\int\limits_0^{\frac{\pi }{2}} {cosx.f(x)dx = sinx.f(x)\left| {_0^{\frac{\pi }{2}}} \right.} - \int\limits_0^{\frac{\pi }{2}} {xsi{n^2}xdx} \)
\[ = sin\frac{\pi }{2}.f\left( {\frac{\pi }{2}} \right) - \int\limits_0^{\frac{\pi }{2}} {x\frac{{1 - cos2x}}{2}} dx\]
\[ = 2 - \frac{1}{2}\left( {\int\limits_0^{\frac{\pi }{2}} {xdx - \int\limits_0^{\frac{\pi }{2}} {xcos2xdx} } } \right)\]
\[\begin{array}{l} = 2 - \frac{1}{2}\left( {\frac{{{x^2}}}{2}\left| {_0^{\frac{\pi }{2}} - I} \right.} \right)\\ = 2 - \frac{1}{2}\left( {\frac{{{\pi ^2}}}{8} - I} \right)\\ = 2 - \frac{{{\pi ^2}}}{{16}} + \frac{I}{2}\end{array}\]
Xét tích phân\[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} x\cos 2xdx\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{sin2x}}{2}}\end{array}} \right.\) khi đó ta có:
\[I = x.\frac{{sin2x}}{2}\left| {_0^{\frac{\pi }{2}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {sin2xdx} \]
\[I = \frac{\pi }{2}.\frac{{sin\pi }}{2} - 0 + \frac{1}{2}.\frac{{cos2x}}{2}\left| {_0^{\frac{\pi }{2}}} \right.\]
\[I = \frac{1}{4}(cos\pi - cos0)\]
\[I = \frac{1}{4}( - 1 - 1) = - \frac{1}{2}\]
Do đó\[\mathop \smallint \limits_0^{\frac{\pi }{2}} \cos x.f\left( x \right)dx = 2 - \frac{{{\pi ^2}}}{{16}} - \frac{1}{4} = \frac{7}{4} - \frac{{{\pi ^2}}}{{16}}\]
\[ \Rightarrow a = 7,\,\,b = 4,\,\,c = 16\]
Vậy\[a + b + c = 7 + 4 + 16 = 27\]Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Biết tích phân \[I = \mathop \smallint \limits_0^1 x{e^{2x}}dx = a{e^2} + b\] (a,b là các số hữu tỉ). Khi đó tổng a+b là:
Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt
Cho f(x),g(x) là hai hàm số có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\;\]và thỏa mãn điều kiện \[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = 1,\int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx = 2\]. Tính tích phân \(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx\)A.I=2
Giả sử tích phân \[I = \mathop \smallint \limits_0^4 x\ln {\left( {2x + 1} \right)^{2017}}dx = a + \frac{b}{c}\ln 3.\]. Với phân số \(\frac{b}{c}\) tối giản. Lúc đó :
Cho hàm số y=f(x)thỏa mãn hệ thức \[ \Rightarrow \smallint f(x)\sin {\rm{x}}dx = - f(x).\cos x + \smallint {\pi ^x}.\cos xdx\]. Hỏi y=f(x) là hàm số nào trong các hàm số sau:
Cho tích phân \[I = \mathop \smallint \limits_1^2 \frac{{x + \ln x}}{{{{\left( {x + 1} \right)}^3}}}{\rm{d}}x = a + b.\ln 2 - c.\ln 3\]với\[a,b,c \in R\], tỉ số \(\frac{c}{a}\) bằng
Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì
Cho hàm số f(x) có \[f\left( 2 \right) = 0\;\] và \[f\prime (x) = \frac{{x + 7}}{{\sqrt {2x - 3} }},\;\forall x \in (\frac{3}{2}; + \infty )\;\]. Biết rằng \[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}(a,b \in \mathbb{Z},b > 0,\frac{a}{b}\] là phân số tối giản). Khi đó a+b bằng:
Cho f(x) liên tục trên \(\mathbb{R}\) và \[f\left( 2 \right) = 1,\;\int\limits_0^1 {f(2x)dx = 2} \]. Tích phân \(\int\limits_0^1 {xf'\left( x \right)} dx\) bằng
Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]
Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {1;3} \right],\]thỏa mãn \[f(4 - x) = f(x),\forall x \in \left[ {1;3} \right]\;\] và \[\mathop \smallint \limits_1^3 xf\left( x \right)dx = - 2\]. Giá trị \(2\mathop \smallint \limits_1^3 f\left( x \right)dx\) bằng
Cho \[I = \mathop \smallint \limits_0^1 \left( {x + \sqrt {{x^2} + 15} } \right)dx = a + b\ln 3 + c\ln 5\] với \[a,b,c \in \mathbb{Q}\]. Tính tổng a+b+c.
Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)
Cho hàm số f(x) liên tục trên \[\left( { - \frac{1}{2};2} \right)\;\]thỏa mãn \[f\left( 0 \right) = 2\], \({\int\limits_0^1 {\left[ {f'\left( x \right)} \right]} ^2}dx = 12 - 16\ln 2,\int\limits_0^1 {\frac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}} dx = 4\ln 2 - 2\). Tính \(\int\limits_0^1 {f\left( x \right)} dx\)
Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x = \frac{{m - \pi }}{{m + \pi }}\], giá trị của m bằng :