IMG-LOGO

Câu hỏi:

23/07/2024 118

Cho các số phức z thỏa mãn \[\left| z \right| = 4\;\]. Biết rằng tập hợp các điểm biểu diễn số phức\[w = \left( {3 + 4i} \right)z + i\;\]là một đường tròn. Tính bán kính r của đường tròn đó.

A.r=4

B.r=5

C.r=20

Đáp án chính xác

D.r=22

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[w = x + yi(x,y \in R)\]

\[\begin{array}{l} \Rightarrow z = \frac{{w - i}}{{3 + 4i}} = \frac{{x + (y - 1)i}}{{3 + 4i}} = \frac{{3x + 4(y - 1) + [3(y - 1) - 4x]i}}{{25}}\\16 = |z{|^2} = {\left( {\frac{{3x + 4y - 4}}{{25}}} \right)^2} + {\left( {\frac{{ - 4x + 3y - 3}}{{25}}} \right)^2}\\{\left[ {\frac{3}{{25}}x + \frac{4}{{25}}\left( {y - 1} \right)} \right]^2} + {\left[ {\frac{{ - 4}}{{25}}x + \frac{3}{{25}}\left( {y - 1} \right)} \right]^2} = 16\\ \Leftrightarrow {x^2}\left[ {{{\left( {\frac{3}{{25}}} \right)}^2} + {{\left( { - \frac{4}{{25}}} \right)}^2}} \right] + {(y - 1)^2}\left[ {{{\left( {\frac{4}{{25}}} \right)}^2} + {{\left( {\frac{3}{{25}}} \right)}^2}} \right] = 16\\ \Leftrightarrow {x^2}.\frac{1}{{25}} + {(y - 1)^2}.\frac{1}{{25}} = 16\\ \Rightarrow {x^2} + {(y - 1)^2} = 400 \Rightarrow r = 20\end{array}\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?

Xem đáp án » 07/09/2022 175

Câu 2:

Số phức z thỏa mãn \[\left| z \right| + z = 0\]. Khi đó:

Xem đáp án » 07/09/2022 173

Câu 3:

Cho số phức \[z = 2 + 5i\]. Tìm số phức \[w = iz + \overline z \]

Xem đáp án » 07/09/2022 170

Câu 4:

Cho số phức z thỏa mãn \[(1 + i)z = 3 - i\]. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình bên ?

Cho số phức z thỏa mãn  (ảnh 1)

Xem đáp án » 07/09/2022 163

Câu 5:

Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]

Xem đáp án » 07/09/2022 157

Câu 6:

Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \[{z_1} = - 1 + i,\;{z_2} = 1 + 2i,{z_3} = 2 - i,{z_4} = - 3i\]. Gọi S diện tích tứ giác ABCD. Tính S.

Xem đáp án » 07/09/2022 156

Câu 7:

Gọi M và N lần lượt là điểm biểu diễn của các số phức \[{z_1};{z_2}\;\] khác 0. Khi đó khẳng định nào sau đây sai ?

Xem đáp án » 07/09/2022 153

Câu 8:

Tìm điểm M biểu diễn số phức \[z = i - 2\]

Xem đáp án » 07/09/2022 149

Câu 9:

Cho số phức z thỏa mãn \[{\left( {1 + z} \right)^2}\] là số thực. Tập hợp điểm MM biểu diễn số phức z là:

Xem đáp án » 07/09/2022 148

Câu 10:

Cho số phức z thỏa mãn (2−i)z=7−i . Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình dưới.

Cho số phức z thỏa mãn  (ảnh 1)

Xem đáp án » 07/09/2022 144

Câu 11:

Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là:

Xem đáp án » 07/09/2022 142

Câu 12:

Cho các số phức \[{z_1} = 3 - 2i,{z_2} = 1 + 4i\] và \[{z_3} = - 1 + i\;\] có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm A,B,C. Diện tích tam giác ABC bằng:

Xem đáp án » 07/09/2022 140

Câu 13:

Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.

Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.Hỏi hình nào biểu diễn cho số phức  (ảnh 1)

Hỏi hình nào biểu diễn cho số phức \[w = \frac{i}{{\overline z }}\]

 

 

Xem đáp án » 07/09/2022 138

Câu 14:

Cho số phức z thay đổi, luôn có \[\left| z \right| = 2\;\]. Khi đó tập hợp điểm biểu diễn số phức \[w = \left( {1 - 2i} \right)\overline z + 3i\;\] là

Xem đáp án » 07/09/2022 138

Câu 15:

Cho ba điểm A,B,C lần lượt biểu diễn các số phức sau \[{z_1} = 1 + i;{z_2} = z_1^2;{z_3} = m - i\]. Tìm các giá trị thực của m sao cho tam giác ABC vuông tại B.

Xem đáp án » 07/09/2022 134

Câu hỏi mới nhất

Xem thêm »
Xem thêm »