Tập hợp các điểm cách đều hai đầu mút của đoạn thẳng là:
A.đường trung trực của đoạn thẳng
B.trung điểm của đoạn thẳng
C.mặt phẳng trung trực của đoạn thẳng
D.đường tròn đường kính là đoạn thẳng đó
Mọi điểm nằm trên mặt phẳng trung trực của đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng và ngược lại.
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên b. Công thức tính bán kính mặt cầu ngoại tiếp khối chóp là:
Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với SA = a, SB = 2a, SC = 3a . Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là
Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2;2;1. Tìm bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên.
Cho mặt cầu (S1) có bán kính R1 mặt cầu (S2) có bán kính R2 = 2R1. Tính tỉ số diện tích của mặt cầu (S2) và (S1).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, \[SA \bot (ABCD)\;\] và SA = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân đỉnh A, AB = AC = a, AA’ =\(a\sqrt 2 \). Diện tích mặt cầu ngoại tiếp tứ diện CA′B′C′ là:
Công thức tính bán kính mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy là:
Trục đa giác đáy là đường thẳng vuông góc với mặt phẳng đáy tại:
Cho tứ diện ABCD có AB = a;AC = BC = AD = BD =\(\frac{{a\sqrt 3 }}{2}\). Gọi M,N là trung điểm của AB,CD. Góc giữa hai mặt phẳng (ABD);(ABC) là \[\alpha \] . Tính \[cos\alpha \] biết mặt cầu đường kính MN tiếp xúc với cạnh AD.
Một thùng rượu vang có dạng hình tròn xoay có hai đáy là hai hình tròn bằng nhau, khoảng cách giữa hai đáy bằng 80(cm). Đường sinh của mặt xung quanh thùng là một phần đường tròn có bán kính 60(cm)(tham khảo hình minh họa bên). Hỏi thùng đó có thể đựng bao nhiêu lít rượu?(làm tròn đến hàng đơn vị)