Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 155

Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \[\left( P \right):x - 2y - z + 2 = 0,\left( Q \right):2x - y + z + 1 = 0\]. Góc giữa (P) và (Q) là

A.\({60^ \circ }\)

Đáp án chính xác

B. \({90^ \circ }\)

C. \({30^ \circ }\)

D. \({120^ \circ }\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Mặt phẳng\[\left( P \right):x - 2y - z + 2 = 0\]có 1 VTPT là\[\overrightarrow {{n_P}} \left( {1; - 2; - 1} \right)\]

Mặt phẳng\[\left( Q \right):x - 2y - z + 2 = 0\]có 1 VTPT là\[\overrightarrow {{n_Q}} \left( {2; - 1;1} \right)\]

Khi đó ta có: \[\cos \angle \left( {\left( P \right);\left( Q \right)} \right) = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|.\left| {\overrightarrow {{n_Q}} } \right|}}\]

\[ = \frac{{\left| {1.2 - 2.\left( { - 1} \right) - 1.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{3}{6} = \frac{1}{2}\]

Vậy\[\angle \left( {\left( P \right);\left( Q \right)} \right) = {60^0}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng\[\left( P \right):2x + 2y - z - 11 = 0\] và \[\left( Q \right):2x + 2y - z + 4 = 0\]

Xem đáp án » 07/09/2022 208

Câu 2:

Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 2; 3), B(3; 4; 4). Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng \[2x + y + mz - 1 = 0\;\]bằng độ dài đoạn thẳng AB.

Xem đáp án » 07/09/2022 202

Câu 3:

Mặt phẳng \[\left( P \right):ax - by - cz - d = 0\]có một VTPT là:

Xem đáp án » 07/09/2022 185

Câu 4:

Cho hai mặt phẳng \[\left( P \right):ax + by + cz + d = 0;\left( Q \right) = a'x + b'y + c'z + d' = 0\]. Điều kiện để hai mặt phẳng song song là:

Xem đáp án » 07/09/2022 172

Câu 5:

Cho mặt phẳng \[\left( P \right):2x - z + 1 = 0\], tìm một véc tơ pháp tuyến của mặt phẳng (P)?

Xem đáp án » 07/09/2022 171

Câu 6:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x + 2y + z - 1 = 0\]. Khoảng cách từ gốc tọa độ O đến mặt phẳng (P) bằng bao nhiêu?

Xem đáp án » 07/09/2022 170

Câu 7:

Cho hai mặt phẳng \[\left( P \right):ax + by + cz + d = 0;\] \[\left( Q \right):a\prime x + b\prime y + c\prime z + d\prime = 0\]. Công thức tính cô sin của góc giữa hai mặt phẳng là:

Xem đáp án » 07/09/2022 169

Câu 8:

Cho hai mặt phẳng \[\left( P \right):ax + by + cz + d = 0;\left( Q \right):a'x + b'y + c'z + d' = 0\]. Nếu có \[\frac{a}{{a'}} = \frac{b}{{b'}} = \frac{c}{{c'}}\] thì:

Xem đáp án » 07/09/2022 168

Câu 9:

Trong không gian Oxyz, cho điểm M(1;6;−3) và mặt phẳng \[\left( P \right):2x - 2y + z - 2 = 0\].  Khoảng cách từ M đến (P) bằng:

Xem đáp án » 07/09/2022 163

Câu 10:

Cho mặt phẳng \[\left( P \right):ax + by + cz + d = 0\]. Khoảng cách từ điểm \[M\left( {{x_0};{y_0};{z_0}} \right)\;\] đến mặt phẳng (P) là:

Xem đáp án » 07/09/2022 156

Câu 11:

Cho điểm M(1;2;0) và mặt phẳng \[\left( P \right):x - 3y + z = 0\]. Khoảng cách từ M đến (P) là:

Xem đáp án » 07/09/2022 155

Câu 12:

Cho mặt phẳng \[\left( P \right):x - y + z = 1,\left( Q \right):x + z + y - 2 = 0\]và điểm M(0;1;1). Chọn kết luận đúng:

Xem đáp án » 07/09/2022 152

Câu 13:

Cho \[\alpha ,\beta \] lần lượt là góc giữa hai véc tơ pháp tuyến bất kì và góc giữa hai mặt phẳng (P) và (Q). Chọn nhận định đúng:

Xem đáp án » 07/09/2022 150

Câu 14:

Trong không gian Oxyz, điểm O(0;0;0) thuộc mặt phẳng nào sau đây?

Xem đáp án » 07/09/2022 140

Câu 15:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):2x - y + z - 1 = 0\;\]. Điểm nào dưới đây thuộc (P)

Xem đáp án » 07/09/2022 132

Câu hỏi mới nhất

Xem thêm »
Xem thêm »