Phương pháp:
+ Sử dụng biểu thức tính quãng đường lớn nhất vật đi được trong thời gian \[\Delta t:{S_{\max }} = 2A\sin \frac{{\Delta \varphi }}{2}\]
+ Sử dụng biểu thức tính quãng đường nhỏ nhất vật đi được trong thời gian \[\Delta t:{S_{\min }} = 2A\left( {1 - \cos \frac{{\Delta \varphi }}{2}} \right)\]
Cách giải:
+ Quãng đường lớn nhất vật đi được trong thời gian \[\Delta t:{S_{\max }} = 2A\sin \frac{{\Delta \varphi }}{2}\]
+ Quãng đường nhỏ nhất vật đi được trong thời gian \[\Delta t:{S_{\min }} = 2A\left( {1 - \cos \frac{{\Delta \varphi }}{2}} \right)\]
Với \[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{S_{\max }} = 2.10\sin \frac{\pi }{4} = 10\sqrt 2 cm}\\{{S_{\min }} = 2.10\left( {1 - \cos \frac{\pi }{4}} \right) = 20 - 10\sqrt 2 cm}\end{array}} \right.\]
Quãng đường vật có thể đi được: \[{S_{\min }} \le S \le {S_{\max }} \Leftrightarrow 5,858m \le S \le 14,14m\]
⇒ Trong khoảng thời gian 0,5s quãng đường vật có thể đi được là: 8cm.
Chọn B.Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết