Phương pháp:
Điều kiện có sóng dừng trên sợi dây 1 đầu cố định, 1 đầu tự do: \(l = (k + 0,5) \cdot \frac{\lambda }{4} = (k + 0,5) \cdot \frac{v}{{4f}}\)
Tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\)
Cách giải:
Điều kiện có sóng dừng trên dây 1 đầu là nút 1 đầu là bụng sóng: \(l = (k + 0,5) \cdot \frac{v}{{4f}}\)
Theo bài ra ta có: \(\left\{ {\begin{array}{*{20}{l}}{4,5 = (k + 0,5) \cdot \frac{v}{{2f}}\left( 1 \right)}\\{4,5 = (k + 18 + 0,5) \cdot \frac{v}{{(2f + 3)}}\left( 2 \right)}\end{array}} \right.\)
\( \Rightarrow \frac{{k + 0,5}}{f} = \frac{{k + 18,5}}{{f + 3}} = \frac{{18}}{3} = 6 \Rightarrow k + 0,5 = 6f\)
Thay vào (1) ta được: \(4,5 = 6f \cdot \frac{v}{{2f}} = 1,5(\;{\rm{m}}/{\rm{s}})\)
Chọn D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một con lắc lò xo nằm ngang có tần số góc dao động riêng \({\omega _0} = 10{\rm{rad}}/{\rm{s}}\). Tác dụng vào vật nặng theo phương của trục lò xo một ngoại lực biến thiên theo biểu thức \({F_n} = {F_0}\cos 20t(N)\)
Sau một thời gian vật dao động điều hòa với biên độ 5cm. Tốc độ cực đại của vật trong quá trình dao động bằng bao nhiêu?
Một vật thực hiện đồng thời hai dao động điều hòa cùng phương, cùng tần số: Tính tốc độ trung bình của vật từ lúc bắt đầu chuyển động đến khi qua vị trí cân bằng lần đầu.
Đặt điện áp \(u = {U_0}\cos (\omega t + \varphi )\) vào hai đầu đoạn mạch RLC nối tiếp có L thay đổi. Khi công suất của mạch cực đại thì L được xác định bằng biểu thức nào ?