Phương pháp:
Điện áp hiệu dụng giữa hai đầu đoạn mạch chứa điện trở và cuộn dây thuần cảm: \({U_{LR}} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
Điện áp hiệu dụng giữa hai đầu tụ điện: \({U_C} = \frac{{U \cdot {Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
Điện áp hiệu dụng giữa hai đầu cuộn dây: \({U_L} = \frac{{U \cdot {Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
Sử dụng kĩ năng đọc đồ thị
Sử dụng phương pháp chuẩn hóa số liệu cos
Hệ số công suất của mạch điện:
Cách giải:
Ta có đồ thị:
Điện áp hiệu dụng giữa hai đầu đoạn mạch gồm cuộn cảm thuần L và biến trở R, điện áp hiệu dụng hai đầu tụ C, điện áp hiệu dụng hai đầu cuộn cảm thuần L là:
\(\left\{ {\begin{array}{*{20}{l}}{{U_{RL}} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{U}{{\sqrt {1 + \frac{{Z_C^2 - 2{Z_L}{Z_C}}}{{{R^2} + Z_L^2}}} }}}\\{{U_C} = \frac{{U.{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}}\\{{U_L} = \frac{{U.{Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}}\end{array}} \right.\)
Nhận xét: khi R tăng có UC và UL giảm → đồ thị (3) là đồ thị URL
Từ đồ thị ta thấy đồ thị (3) không phụ thuộc vào R
Để URL không phụ thuộc vào R, ta có:
\({Z_C}^2 - 2{Z_L}{Z_C} = 0 \Rightarrow {Z_C} = 2{Z_L} \Rightarrow {U_C} = 2{U_L}\)
Ta thấy với mọi giá trị của R luôn có \({U_C} = 2{U_L} \to \) đồ thị (1) là UC, đồ thị (2) là UL
Lại có: \({U_{RL}} = \frac{U}{{\sqrt {1 + \frac{0}{{{R^2} + Z_L^2}}} }} = U\)
Chuẩn hóa \({Z_L} = 1 \Rightarrow {Z_C} = 2\)
Tại giá trị \(R = {R_0} \Rightarrow {U_C} = {U_{RL}} = U\)
Khi
Chọn D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Dao động của một vật là tổng hợp của hai dao động điều hòa cùng phương, có phương trình li độ lần lượt là \({x_1} = {A_1}\cos \left( {10t + \frac{\pi }{6}} \right)(cm);{x_2} = 4\cos (10t + \varphi )(cm)\) (t tính bằng s), \({A_1}\) có giá trị thay đổi được. Phương trình dao động tổng hợp của vật có dạng \(x = A\cos \left( {\omega t + \frac{\pi }{3}} \right)(cm)\). Độ lớn gia tốc lớn nhất của vật có thể nhận giá trị là