Tìm x, biết:
a) 5x(x – 2000) – x + 2000 = 0
b) x3 – 13x = 0
a) 5x(x – 2000) – x + 2000 = 0
⇔ 5x(x – 2000) – (x – 2000) = 0
(Có x – 2000 là nhân tử chung)
⇔ (x – 2000).(5x – 1) = 0
⇔ x – 2000 = 0 hoặc 5x – 1 = 0
+ x – 2000 = 0 ⇔ x = 2000
+ 5x – 1 = 0 ⇔ 5x = 1 ⇔ x = 1/5.
Vậy có hai giá trị của x thỏa mãn là x = 2000 và x = 1/5.
b) x3 = 13x
⇔ x3 – 13x = 0
⇔ x.x2 – x.13 = 0
(Có nhân tử chung x)
⇔ x(x2 – 13) = 0
⇔ x = 0 hoặc x2 – 13 = 0
+ x2 – 13 = 0 ⇔ x2 = 13 ⇔ x = √13 hoặc x = –√13
Vậy có ba giá trị của x thỏa mãn là x = 0, x = √13 và x = –√13.
Kiến thức áp dụng
Một tích bằng 0 khi một trong các nhân tử của chúng bằng 0
A.B = 0 ⇔ A = 0 hoặc B = 0.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tính giá trị của biểu thức:
a) 15.91,5 + 150.0,85
b) x(x – 1) – y(1 – x) tại x = 2001 và y = 1999
Phân tích các đa thức sau thành nhân tử
a) x2 – x;
b) 5x2(x – 2y) – 15x(x – 2y);
c) 3(x – y) – 5x(y – x).
Phân tích các đa thức sau thành nhân tử
a, ( ab - 1 )2 + ( a + b )2
b, x3 + 2x2 + 2x + 1
c, x2 - 2x - 4y2 - 4y
Tính giá trị của biểu thức sau A = x6 - 2x4 + x3 + x2 - x, biết x3 - x = 6.