Rút gọn mỗi phân số sau về phân số tối giản:
Xét phân số , ta có 14 = 2.7 và 21 = 3.7 nên ƯCLN(14, 21) = 7, khi đó ta có:
Xét phân số , ta có 36 = 22.32, 48 = 3.24 nên ƯCLN(36, 48) = 12, khi đó ta có:
.
Xét phân số , ta có 28 = 22.7, 52 = 22.13 nên ƯCLN(28, 52) = 4, khi đó ta có:
Xét phân số , ta có 54 = 33.2, 90 = 2.32.5 nên ƯCLN(54, 90) = 18, khi đó ta có:
Vậy các phân số đã cho sau khi rút gọn lần lượt là: .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong các phân số sau, tìm phân số không bằng phân số nào trong các phân số còn lại:
a) Rút gọn phân số về phân số tối giản.
b) Viết tất cả các phân số bằng mà mẫu là số tự nhiên có hai chữ số.
Nêu cách rút gọn phân số với tử và mẫu là số nguyên dương về phân số tối giản.
Phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là 1 và - 1.
Viết và đọc phân số trong mỗi trường hợp sau:
a) Tử số là - 43, mẫu số là 19;
b) Tử số là - 123, mẫu số là - 63.
a) Viết các phân số biểu thị phần đã tô màu trong mỗi hình bên.
b) Hai phân số đó có bằng nhau không?
Một tòa nhà chúng cư có ba tầng hầm được kí hiệu theo thứ tự từ trên xuống là B1, B2, B3. Độ cao của ba tầng hầm là bằng nhau. Biết rằng độ cao của mặt sàn tầng hầm B3 so với mặt đất là -10 m. Tính độ cao của mặt sàn tầng hầm B1 so với mặt đất.
a) Ta có: vì 1.10= 5.2 (quy tắc bằng nhau của hai phân số).
Tìm số nguyên thích hợp ở :
b) Ta có: vì 4. (- 6) = 24. (-1) (quy tắc bằng nhau của bai phân số).
Tìm số nguyên thích hợp ở
Viết và đọc phân số trong mỗi trường hợp sau:
a) Tử số là - 6, mẫu số là 17;
b) Tử số là - 12, mẫu số là -37.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1